TY - BOOK A1 - Labisch, Susanna A1 - Wählisch, Georg T1 - Technisches Zeichnen: Eigenständig lernen und effektiv üben Y1 - 2017 SN - 978-3-658-18312-7 U6 - https://doi.org/10.1007/978-3-658-18313-4 N1 - gedruckt in der Bereichsbibliothek Jülich vorhanden; auch als elektronische Ressource PB - Springer Vieweg CY - Wiesbaden ET - 5. überarbeitete Auflage ER - TY - CHAP A1 - Butenweg, Christoph T1 - Passt, wackelt und hat Luft: Mauerwerksbauten aus Leichtbeton in Erdbebengebieten T2 - Beton-Bauteile, 65. Ausgabe (2017): Entwerfen - Planen - Ausführen Y1 - 2017 SN - 978-3-7625-3676-5 N1 - gedruckt in der Bereichsbibliothek Bayernallee unter der Signatur 11 XCF 81-2017 vorhanden SP - 136 EP - 140 PB - Bauverl. CY - Gütersloh ER - TY - JOUR A1 - Klein, Michel A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - The Influence of Soil-Structure-Interaction on the Fatigue Analysis in the Foundation Design of Onshore Wind Turbines JF - Procedia Engineering Y1 - 2017 U6 - https://doi.org/10.1016/j.proeng.2017.09.325 SN - 1877-7058 VL - 199 SP - 3218 EP - 3223 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Pieper, Martin A1 - Wählisch, Georg T1 - Mehrwert von E-Learning durch fächerübergreifenden Einsatz T2 - Teaching is Touching the Future & ePS 2016 - Kompetenzorientiertes Lehren, Lernen und Prüfen Y1 - 2017 SN - 978-3-946017-05-9 SP - 193 EP - 196 PB - UVW Universitätsverlag Webler CY - Bielefeld ER - TY - BOOK A1 - Renckly, Sven A1 - Wählisch, Georg T1 - Technisches Zeichnen für Dummies Y1 - 2017 SN - 978-3-527-70966-3 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Steuer-Dankert, Linda A1 - Bouffier, Anna A1 - Gaedicke, Sonja A1 - Leicht-Scholten, Carmen T1 - Diversifying engineering education: a transdisciplinary approach from RWTH Aachen University T2 - Strategies for increasing diversity in engineering majors and careers N2 - Engineers and therefore engineering education are challenged by the increasing complexity of questions to be answered globally. The education of future engineers therefore has to answer with curriculums that build up relevant skills. This chapter will give an example how to bring engineering and social responsibility successful together to build engineers of tomorrow. Through the integration of gender and diversity perspectives, engineering research and teaching is expanded with new perspectives and contents providing an important potential for innovation. Aiming on the enhancement of engineering education with distinctive competencies beyond technical expertise, the teaching approach introduced in the chapter represents key factors to ensure that coming generations of engineers will be able to meet the requirements and challenges a changing globalized world holds for them. The chapter will describe how this approach successfully has been implemented in the curriculum in engineering of a leading technical university in Germany. Y1 - 2017 SN - 9781522522126 U6 - https://doi.org/10.4018/978-1-5225-2212-6.ch010 SP - 201 EP - 235 PB - IGI Global CY - Hershey, USA ER - TY - BOOK A1 - Labisch, Susanna A1 - Wählisch, Georg T1 - Technisches Zeichnen: Eigenständig lernen und effektiv üben Y1 - 2017 SN - 978-3-658-18313-4 U6 - https://doi.org/10.1007/978-3-658-18313-4 N1 - auch gedruckt in der Bereichsbibliothek Jülich unter der Signatur 61 WBA 6(5) PB - Springer Fachmedien CY - Wiesbaden ET - 5. Aufl. ER - TY - CHAP A1 - Rajan, Sreelakshmy A1 - Holtschoppen, B. A1 - Dalguer, L. A. A1 - Klinkel, S. A1 - Butenweg, Christoph ED - Sas, P. T1 - Seismic fragility analysis of a non-conventional reinforced concrete structure considering different uncertainties T2 - Proceedings of ISMA2016, International Conference on Noise and Vibration Engineering/USD2016, International Conference on Uncertainty in Structural Dynamics, / ISMA 2016, USD 2016 Y1 - 2016 SP - 4213 EP - 4225 PB - KU Leuven CY - Leuven ER - TY - CHAP A1 - Steuer-Dankert, Linda A1 - Leicht-Scholten, Carmen T1 - Social responsibility and innovation - Key competencies for engineers T2 - ICERI 2016: 9th International Conference of Education, Research and Innovation: Conference Proceedings : Seville (Spain), 14-16 November N2 - Engineers are of particular importance for the societies of tomorrow. The big social challenges society has to cope with in future, can only be mastered, if engineers link the development and innovation process closely with the requirements of people. As a result, in the frame of the innovation process engineers have to design and develop products for diverse users. Therefore, the consideration of diversity in this process is a core competence engineers should have. Implementing the consideration of diverse requirements into product design is also linked to the development of sustainable products and thus leads to social responsible research and development, the core concept formulated by the EU. For this reason, future engineers should be educated to look at the technical perspectives of a problem embedded in the related questions within societies they are developing their artefacts for. As a result, the aim of teaching engineering should be to prepare engineers for these requirements and to draw attention to the diverse needs in a globalized world. To match the competence profiles of future engineers to the global challenges and the resulting social responsibility, RWTH Aachen University, one of the leading technical universities in Germany, has established the bridging professorship “Gender and Diversity in Engineering” (GDI) which educates engineers with an interdisciplinary approach to expand engineering limits. The interdisciplinary teaching concept of the research group pursues an approach which imparts an application oriented Gender and Diversity expertise to future engineers. In the frame of an established teaching concept, which is a result of experiences and expertise of the research group, students gain theoretical knowledge about Gender and Diversity and learn how to transfer their knowledge into their later field of action. In the frame of the conference the institutional approach will be presented as well as the teaching concept which will be introduced by concrete course examples. KW - diversity KW - innovation KW - social responsible engineering KW - engineering education Y1 - 2016 SN - 978-84-617-5895-1 U6 - https://doi.org/10.21125/iceri.2016.0353 SN - 2340-1095 SP - 5967 EP - 5976 ER - TY - JOUR A1 - Jablonowski, Nicolai David A1 - Kollmann, Tobias A1 - Nabel, Moritz A1 - Damm, Tatjana A1 - Klose, Holger A1 - Müller, Michael A1 - Bläsing, Marc A1 - Seebold, Sören A1 - Krafft, Simone A1 - Kuperjans, Isabel A1 - Dahmen, Markus A1 - Schurr, Ulrich T1 - Valorization of Sida (Sida hermaphrodita) biomass for multiple energy purposes JF - GCB [Global Change Biology] Bioenergy N2 - The performance and biomass yield of the perennial energy plant Sida hermaphrodita (hereafter referred to as Sida) as a feedstock for biogas and solid fuel was evaluated throughout one entire growing period at agricultural field conditions. A Sida plant development code was established to allow comparison of the plant growth stages and biomass composition. Four scenarios were evaluated to determine the use of Sida biomass with regard to plant development and harvest time: (i) one harvest for solid fuel only; (ii) one harvest for biogas production only; (iii) one harvest for biogas production, followed by a harvest of the regrown biomass for solid fuel; and (iv) two consecutive harvests for biogas production. To determine Sida's value as a feedstock for combustion, we assessed the caloric value, the ash quality, and melting point with regard to DIN EN ISO norms. The results showed highest total dry biomass yields of max. 25 t ha⁻¹, whereas the highest dry matter of 70% to 80% was obtained at the end of the growing period. Scenario (i) clearly indicated the highest energy recovery, accounting for 439 288 MJ ha⁻¹; the energy recovery of the four scenarios from highest to lowest followed this order: (i) ≫ (iii) ≫ (iv) > (ii). Analysis of the Sida ashes showed a high melting point of >1500 °C, associated with a net calorific value of 16.5–17.2 MJ kg⁻¹. All prerequisites for DIN EN ISO norms were achieved, indicating Sida's advantage as a solid energy carrier without any post-treatment after harvesting. Cell wall analysis of the stems showed a constant lignin content after sampling week 16 (July), whereas cellulose had already reached a plateau in sampling week 4 (April). The results highlight Sida as a promising woody, perennial plant, providing biomass for flexible and multipurpose energy applications. Y1 - 2016 U6 - https://doi.org/10.1111/gcbb.12346 SN - 1757-1707 (online) SN - 1757-1693 (print) N1 - Special Issue: Perennial biomass crops for a resource constrained world VL - 9 IS - 1 SP - 202 EP - 214 PB - Wiley-VCH CY - Weinheim ER -