TY - JOUR A1 - Schmidt, K. A1 - Forkmann, K. A1 - Sinke, C. A1 - Gratz, M. A1 - Bitz, Andreas A1 - Bingel, U. T1 - The differential effect of trigeminal vs. peripheral pain stimulation on visual processing and memory encoding is influenced by pain-related fear JF - NeuroImage N2 - Compared to peripheral pain, trigeminal pain elicits higher levels of fear, which is assumed to enhance the interruptive effects of pain on concomitant cognitive processes. In this fMRI study we examined the behavioral and neural effects of trigeminal (forehead) and peripheral (hand) pain on visual processing and memory encoding. Cerebral activity was measured in 23 healthy subjects performing a visual categorization task that was immediately followed by a surprise recognition task. During the categorization task subjects received concomitant noxious electrical stimulation on the forehead or hand. Our data show that fear ratings were significantly higher for trigeminal pain. Categorization and recognition performance did not differ between pictures that were presented with trigeminal and peripheral pain. However, object categorization in the presence of trigeminal pain was associated with stronger activity in task-relevant visual areas (lateral occipital complex, LOC), memory encoding areas (hippocampus and parahippocampus) and areas implicated in emotional processing (amygdala) compared to peripheral pain. Further, individual differences in neural activation between the trigeminal and the peripheral condition were positively related to differences in fear ratings between both conditions. Functional connectivity between amygdala and LOC was increased during trigeminal compared to peripheral painful stimulation. Fear-driven compensatory resource activation seems to be enhanced for trigeminal stimuli, presumably due to their exceptional biological relevance. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.neuroimage.2016.03.026 SN - 1053-8119 VL - 134 SP - 386 EP - 395 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Chen, Bixia A1 - Schoemberg, Tobias A1 - Kraff, Oliver A1 - Dammann, Philipp A1 - Bitz, Andreas A1 - Schlamann, Marc A1 - Quick, Harald H. A1 - Ladd, Mark E. A1 - Sure, Ulrich A1 - Wrede, Karsten H. T1 - Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study JF - Magnetic Resonance Materials in Physics, Biology and Medicine N2 - Objective This study assesses and quantifies impairment of postoperative magnetic resonance imaging (MRI) at 7 Tesla (T) after implantation of titanium cranial fixation plates (CFPs) for neurosurgical bone flap fixation. Materials and methods The study group comprised five patients who were intra-individually examined with 3 and 7 T MRI preoperatively and postoperatively (within 72 h/3 months) after implantation of CFPs. Acquired sequences included T₁-weighted magnetization-prepared rapid-acquisition gradient-echo (MPRAGE), T₂-weighted turbo-spin-echo (TSE) imaging, and susceptibility-weighted imaging (SWI). Two experienced neurosurgeons and a neuroradiologist rated image quality and the presence of artifacts in consensus reading. Results Minor artifacts occurred around the CFPs in MPRAGE and T2 TSE at both field strengths, with no significant differences between 3 and 7 T. In SWI, artifacts were accentuated in the early postoperative scans at both field strengths due to intracranial air and hemorrhagic remnants. After resorption, the brain tissue directly adjacent to skull bone could still be assessed. Image quality after 3 months was equal to the preoperative examinations at 3 and 7 T. Conclusion Image quality after CFP implantation was not significantly impaired in 7 T MRI, and artifacts were comparable to those in 3 T MRI. Y1 - 2016 U6 - http://dx.doi.org/10.1007/s10334-016-0548-1 SN - 1352-8661 VL - 29 IS - 3 SP - 389 EP - 398 PB - Springer CY - Berlin ER - TY - JOUR A1 - Orzada, Stephan A1 - Ladd, Mark E. A1 - Bitz, Andreas T1 - A method to approximate maximum local SAR in multichannel transmit MR systems without transmit phase information JF - Magnetic Resonance in Medicine N2 - Purpose To calculate local specific absorption rate (SAR) correctly, both the amplitude and phase of the signal in each transmit channel have to be known. In this work, we propose a method to derive a conservative upper bound for the local SAR, with a reasonable safety margin without knowledge of the transmit phases of the channels. Methods The proposed method uses virtual observation points (VOPs). Correction factors are calculated for each set of VOPs that prevent underestimation of local SAR when the VOPs are applied with the correct amplitudes but fixed phases. Results The proposed method proved to be superior to the worst-case calculation based on the maximum eigenvalue of the VOPs. The mean overestimation for six coil setups could be reduced, whereas no underestimation of the maximum local SAR occurred. In the best investigated case, the overestimation could be reduced from a factor of 3.3 to a factor of 1.7. Conclusion The upper bound for the local SAR calculated with the proposed method allows a fast estimation of the local SAR based on power measurements in the transmit channels and facilitates SAR monitoring in systems that do not have the capability to monitor transmit phases Y1 - 2016 U6 - http://dx.doi.org/10.1002/mrm.26398 SN - 1522-2594 VL - 78 IS - 2 SP - 805 EP - 811 PB - International Society for Magnetic Resonance in Medicine ER - TY - JOUR A1 - Fiedler, Thomas M. A1 - Ladd, Mark E. A1 - Bitz, Andreas T1 - RF safety assessment of a bilateral four-channel transmit/receive 7 Tesla breast coil: SAR versus temperature limits JF - Medical Physics Y1 - 2017 U6 - http://dx.doi.org/10.1002/mp.12034 N1 - This article is corrected by: Errata: Erratum: “RF safety assessment of a bilateral four-channel transmit/receive 7 Tesla breast coil: SAR versus tissue temperature limits” [Med. Phys. 44(1), 143–157 (2017)] Volume 44, Issue 2, 772 VL - 44 IS - 1 SP - 143 EP - 157 ER - TY - JOUR A1 - Noureddine, Yacine A1 - Kraff, Oliver A1 - Ladd, Mark E. A1 - Wrede, Karsten H. A1 - Chen, Bixia A1 - Quick, Harald H. A1 - Schaefers, Gregor A1 - Bitz, Andreas T1 - In vitro and in silico assessment of RF-induced heating around intracranial aneurysm clips at 7 Tesla JF - Magnetic Resonance in Medicine Y1 - 2017 U6 - http://dx.doi.org/10.1002/mrm.26650 SN - 1522-2594 IS - Early view PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Fiedler, Thomas M. A1 - Ladd, Mark E. A1 - Bitz, Andreas T1 - SAR Simulations & Safety JF - NeuroImage Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.neuroimage.2017.03.035 SN - 1053-8119 IS - Epub ahead of print PB - Elsevier CY - Amsterdam ER -