TY - JOUR A1 - Khayyam, Hamid A1 - Jamali, Ali A1 - Bab-Hadiashar, Alireza A1 - Esch, Thomas A1 - Ramakrishna, Seeram A1 - Jalili, Mahdi A1 - Naebe, Minoo T1 - A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modeling with Application in Industry 4.0 JF - IEEE Access N2 - To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employment of machine learning techniques that can deal with modeling both big or limited data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update the coefficient of the deterministic model and increase its robustness against data uncertainties. The effectiveness of the proposed method is examined on a set of real industrial measurements. Y1 - 2020 U6 - https://doi.org/10.1109/ACCESS.2020.2999898 SN - 2169-3536 VL - 8 IS - Art. 9108222 SP - 111381 EP - 111393 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Dachwald, Bernd A1 - Ulamec, Stephan A1 - Postberg, Frank A1 - Sohl, Frank A1 - Vera, Jean-Pierre de A1 - Christoph, Waldmann A1 - Lorenz, Ralph D. A1 - Hellard, Hugo A1 - Biele, Jens A1 - Rettberg, Petra T1 - Key technologies and instrumentation for subsurface exploration of ocean worlds JF - Space Science Reviews N2 - In this chapter, the key technologies and the instrumentation required for the subsurface exploration of ocean worlds are discussed. The focus is laid on Jupiter’s moon Europa and Saturn’s moon Enceladus because they have the highest potential for such missions in the near future. The exploration of their oceans requires landing on the surface, penetrating the thick ice shell with an ice-penetrating probe, and probably diving with an underwater vehicle through dozens of kilometers of water to the ocean floor, to have the chance to find life, if it exists. Technologically, such missions are extremely challenging. The required key technologies include power generation, communications, pressure resistance, radiation hardness, corrosion protection, navigation, miniaturization, autonomy, and sterilization and cleaning. Simpler mission concepts involve impactors and penetrators or – in the case of Enceladus – plume-fly-through missions. Y1 - 2020 U6 - https://doi.org/10.1007/s11214-020-00707-5 SN - 1572-9672 N1 - Corresponding author: Bernd Dachwald VL - 216 IS - Art. 83 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Weber, Tobias A1 - Arent, Jan-Christoph A1 - Münch, Lukas A1 - Duhovic, Miro A1 - Balvers, Johannes M. T1 - A fast method for the generation of boundary conditions for thermal autoclave simulation JF - Composites Part A N2 - Manufacturing process simulation enables the evaluation and improvement of autoclave mold concepts early in the design phase. To achieve a high part quality at low cycle times, the thermal behavior of the autoclave mold can be investigated by means of simulations. Most challenging for such a simulation is the generation of necessary boundary conditions. Heat-up and temperature distribution in an autoclave mold are governed by flow phenomena, tooling material and shape, position within the autoclave, and the chosen autoclave cycle. This paper identifies and summarizes the most important factors influencing mold heat-up and how they can be introduced into a thermal simulation. Thermal measurements are used to quantify the impact of the various parameters. Finally, the gained knowledge is applied to develop a semi-empirical approach for boundary condition estimation that enables a simple and fast thermal simulation of the autoclave curing process with reasonably high accuracy for tooling optimization. Y1 - 2016 U6 - https://doi.org/10.1016/j.compositesa.2016.05.036 SN - 1359-835X VL - 88 SP - 216 EP - 225 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Weber, Tobias A1 - Arent, Jan-Christoph A1 - Steffen, Lucas A1 - Balvers, Johannes M. A1 - Duhovic, Miro T1 - Thermal optimization of composite autoclave molds using the shift factor approach for boundary condition estimation JF - Journal of Composite Materials Y1 - 2017 U6 - https://doi.org/10.1177/0021998317699868 SN - 1530-793X VL - 51 IS - 12 SP - 1753 EP - 1767 PB - Sage CY - London ER - TY - JOUR A1 - Weber, Tobias A1 - Ruff-Stahl, Hans-Joachim K. T1 - Advances in Composite Manufacturing of Helicopter Parts JF - International Journal of Aviation, Aeronautics, and Aerospace Y1 - 2017 U6 - https://doi.org/10.15394/ijaaa.2017.1153 SN - 2374-6793 VL - 4 IS - 1 ER - TY - JOUR A1 - Otten, Dennis A1 - Weber, Tobias A1 - Arent, Jan-Christoph T1 - Manufacturing Process Simulation – On Its Way to Industrial Application JF - International Journal of Aviation, Aeronautics, and Aerospace N2 - Manufacturing process simulation (MPS) has become more and more important for aviation and the automobile industry. A highly competitive market requires the use of high performance metals and composite materials in combination with reduced manufacturing cost and time as well as a minimization of the time to market for a new product. However, the use of such materials is expensive and requires sophisticated manufacturing processes. An experience based process and tooling design followed by a lengthy trial-and-error optimization is just not contemporary anymore. Instead, a tooling design process aided by simulation is used more often. This paper provides an overview of the capabilities of MPS in the fields of sheet metal forming and prepreg autoclave manufacturing of composite parts summarizing the resulting benefits for tooling design and manufacturing engineering. The simulation technology is explained briefly in order to show several simplification and optimization techniques for developing industrialized simulation approaches. Small case studies provide examples of an efficient application on an industrial scale. Y1 - 2018 U6 - https://doi.org/10.15394/ijaaa.2018.1217 SN - 2374-6793 VL - 5 IS - 2 PB - Embry-Riddle Aeronautical University CY - Daytona Beach, Fla. ER - TY - JOUR A1 - Weber, Tobias A1 - Englhard, Markus A1 - Arent, Jan-Christoph A1 - Hausmann, Joachim T1 - An experimental characterization of wrinkling generated during prepreg autoclave manufacturing using caul plates JF - Journal of Composite Materials Y1 - 2019 U6 - https://doi.org/10.1177/0021998319846556 SN - 1530-793X VL - 53 IS - 26-27 SP - 3757 EP - 3773 ER - TY - JOUR A1 - Hailer, Benjamin A1 - Weber, Tobias A1 - Neveling, Sebastian A1 - Dera, Samuel A1 - Arent, Jan-Christoph A1 - Middendorf, Peter T1 - Development of a test device to determine the frictional behavior between honeycomb and prepreg layers under realistic manufacturing conditions JF - Journal of Sandwich Structures & Materials N2 - In the friction tests between honeycomb with film adhesive and prepreg, the relative displacement occurs between the film adhesive and the prepreg. The film adhesive does not shift relative to the honeycomb. This is consistent with the core crush behavior where the honeycomb moves together with the film adhesive, as can be seen in Figure 2(a). The pull-through forces of the friction measurements between honeycomb and prepreg at 1 mm deformation are plotted in Figure 17(a). While the friction at 100°C is similar to the friction at 120°C, it decreases significantly at 130°C and exhibits a minimum at 140°C. At 150°C, the friction rises again slightly and then sharply at 160°C. Since the viscosity of the M18/1 prepreg resin drops significantly before it cures [23], the minimum friction at 140°C could result from a minimum viscosity of the mixture of prepreg resin and film adhesive before the bond subsequently cures. Figure 17(b) shows the mean value curve of the friction measurements at 140°C. The error bars, which represent the standard deviation, reveal the good repeatability of the tests. The force curve is approximately horizontal between 1 mm and 2 mm. The friction then slightly rises. As with interlaminar friction measurements, this could be due to the fact that resin is removed by friction and the proportion of boundary lubrication increases. Figure 18 shows the surfaces after the friction measurement. The honeycomb cell walls are clearly visible in the film adhesive. There are areas where the film adhesive is completely removed and the carrier material of the film adhesive becomes visible. In addition, the viscosity of the resin changes as the curing progresses during the friction test. This can also affect the force-displacement curve. Y1 - 2020 U6 - https://doi.org/10.1177/1099636220923986 SN - 1530-7972 IS - Volume 23, Issue 7 SP - 3017 EP - 3043 PB - Sage CY - London ER - TY - JOUR A1 - Khayyam, Hamid A1 - Jamali, Ali A1 - Bab-Hadiashar, Alireza A1 - Esch, Thomas A1 - Ramakrishna, Seeram A1 - Jalil, Mahdi A1 - Naebe, Minoo T1 - A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modelling with Application in Industry 4.0 JF - IEEE Access N2 - To meet the challenges of manufacturing smart products, the manufacturing plants have been radically changed to become smart factories underpinned by industry 4.0 technologies. The transformation is assisted by employment of machine learning techniques that can deal with modeling both big or limited data. This manuscript reviews these concepts and present a case study that demonstrates the use of a novel intelligent hybrid algorithms for Industry 4.0 applications with limited data. In particular, an intelligent algorithm is proposed for robust data modeling of nonlinear systems based on input-output data. In our approach, a novel hybrid data-driven combining the Group-Method of Data-Handling and Singular-Value Decomposition is adapted to find an offline deterministic model combined with Pareto multi-objective optimization to overcome the overfitting issue. An Unscented-Kalman-Filter is also incorporated to update the coefficient of the deterministic model and increase its robustness against data uncertainties. The effectiveness of the proposed method is examined on a set of real industrial measurements. Y1 - 2020 SN - 2169-3536 U6 - https://doi.org/10.1109/ACCESS.2020.2999898 SP - 1 EP - 12 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, Cees T1 - Mass, primary energy, and cost: the impact of optimization objectives on the initial sizing of hybrid-electric general aviation aircraft JF - CEAS Aeronautical Journal N2 - For short take-off and landing (STOL) aircraft, a parallel hybrid-electric propulsion system potentially offers superior performance compared to a conventional propulsion system, because the short-take-off power requirement is much higher than the cruise power requirement. This power-matching problem can be solved with a balanced hybrid propulsion system. However, there is a trade-off between wing loading, power loading, the level of hybridization, as well as range and take-off distance. An optimization method can vary design variables in such a way that a minimum of a particular objective is attained. In this paper, a comparison between the optimization results for minimum mass, minimum consumed primary energy, and minimum cost is conducted. A new initial sizing algorithm for general aviation aircraft with hybrid-electric propulsion systems is applied. This initial sizing methodology covers point performance, mission performance analysis, the weight estimation process, and cost estimation. The methodology is applied to the design of a STOL general aviation aircraft, intended for on-demand air mobility operations. The aircraft is sized to carry eight passengers over a distance of 500 km, while able to take off and land from short airstrips. Results indicate that parallel hybrid-electric propulsion systems must be considered for future STOL aircraft. Y1 - 2020 U6 - https://doi.org/10.1007/s13272-020-00449-8 SN - 1869-5590 N1 - Corresponding author: Felix Finger VL - 2020 IS - 11 SP - 713 EP - 730 PB - Springer CY - Heidelberg ER -