TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Gamification of virtual reality assembly training: Effects of a combined point and level system on motivation and training results JF - International Journal of Human-Computer Studies N2 - Virtual Reality (VR) offers novel possibilities for remote training regardless of the availability of the actual equipment, the presence of specialists, and the training locations. Research shows that training environments that adapt to users' preferences and performance can promote more effective learning. However, the observed results can hardly be traced back to specific adaptive measures but the whole new training approach. This study analyzes the effects of a combined point and leveling VR-based gamification system on assembly training targeting specific training outcomes and users' motivations. The Gamified-VR-Group with 26 subjects received the gamified training, and the Non-Gamified-VR-Group with 27 subjects received the alternative without gamified elements. Both groups conducted their VR training at least three times before assembling the actual structure. The study found that a level system that gradually increases the difficulty and error probability in VR can significantly lower real-world error rates, self-corrections, and support usages. According to our study, a high error occurrence at the highest training level reduced the Gamified-VR-Group's feeling of competence compared to the Non-Gamified-VR-Group, but at the same time also led to lower error probabilities in real-life. It is concluded that a level system with a variable task difficulty should be combined with carefully balanced positive and negative feedback messages. This way, better learning results, and an improved self-evaluation can be achieved while not causing significant impacts on the participants' feeling of competence. KW - Gamification KW - Virtual reality KW - Assembly KW - User study KW - Level system Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.ijhcs.2022.102854 SN - 1071-5819 VL - 165 IS - Art. No. 102854 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Evans, Benjamin A1 - Braun, Sebastian A1 - Ulmer, Jessica A1 - Wollert, Jörg T1 - AAS implementations - current problems and solutions T2 - 20th International Conference on Mechatronics - Mechatronika (ME) N2 - The fourth industrial revolution presents a multitude of challenges for industries, one of which being the increased flexibility required of manufacturing lines as a result of increased consumer demand for individualised products. One solution to tackle this challenge is the digital twin, more specifically the standardised model of a digital twin also known as the asset administration shell. The standardisation of an industry wide communications tool is a critical step in enabling inter-company operations. This paper discusses the current state of asset administration shells, the frameworks used to host them and their problems that need to be addressed. To tackle these issues, we propose an event-based server capable of drastically reducing response times between assets and asset administration shells and a multi-agent system used for the orchestration and deployment of the shells in the field. KW - Industry 4.0 KW - Multi-agent Systems KW - Digital Twin KW - Asset Administration Shell Y1 - 2022 SN - 978-1-6654-1040-3 U6 - http://dx.doi.org/10.1109/ME54704.2022.9982933 PB - IEEE ER - TY - CHAP A1 - Chavez Bermudez, Victor Francisco A1 - Cruz Castanon, Victor Fernando A1 - Ruchay, Marco A1 - Wollert, Jörg ED - Leipzig, Hochschule für Technik, Wirtschaft und Kultur T1 - Rapid prototyping framework for automation applications based on IO-Link T2 - Tagungsband AALE 2022 N2 - The development of protype applications with sensors and actuators in the automation industry requires tools that are independent of manufacturer, and are flexible enough to be modified or extended for any specific requirements. Currently, developing prototypes with industrial sensors and actuators is not straightforward. First of all, the exchange of information depends on the industrial protocol that these devices have. Second, a specific configuration and installation is done based on the hardware that is used, such as automation controllers or industrial gateways. This means that the development for a specific industrial protocol, highly depends on the hardware and the software that vendors provide. In this work we propose a rapid-prototyping framework based on Arduino to solve this problem. For this project we have focused to work with the IO-Link protocol. The framework consists of an Arduino shield that acts as the physical layer, and a software that implements the IO-Link Master protocol. The main advantage of such framework is that an application with industrial devices can be rapid-prototyped with ease as its vendor independent, open-source and can be ported easily to other Arduino compatible boards. In comparison, a typical approach requires proprietary hardware, is not easy to port to another system and is closed-source. KW - Rapid-prototyping KW - Arduino KW - IO-Link KW - Industrial Communication Y1 - 2022 SN - 978-3-910103-00-9 U6 - http://dx.doi.org/10.33968/2022.28 N1 - 18. AALE-Konferenz, Pforzheim, 09.03.-11.03.2022. CY - Leipzig ER - TY - CHAP A1 - Ulmer, Jessica A1 - Mostafa, Youssef A1 - Wollert, Jörg T1 - Digital Twin Academy: From Zero to Hero through individual learning experiences T2 - Tagungsband AALE 2022 / Herausgegeben von der Hochschule für Technik, Wirtschaft und Kultur Leipzig N2 - Digital twins are seen as one of the key technologies of Industry 4.0. Although many research groups focus on digital twins and create meaningful outputs, the technology has not yet reached a broad application in the industry. The main reasons for this imbalance are the complexity of the topic, the lack of specialists, and the unawareness of the twin opportunities. The project "Digital Twin Academy" aims to overcome these barriers by focusing on three actions: Building a digital twin community for discussion and exchange, offering multi-stage training for various knowledge levels, and implementing realworld use cases for deeper insights and guidance. In this work, we focus on creating a flexible learning platform that allows the user to select a training path adjusted to personal knowledge and needs. Therefore, a mix of basic and advanced modules is created and expanded by individual feedback options. The usage of personas supports the selection of the appropriate modules. KW - Digital Twins KW - Knowledge Transfer KW - Training Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bsz:l189-qucosa2-776097 SN - 978-3-910103-00-9 N1 - Konferenz: 18. AALE-Konferenz. Pforzheim, 09.03.-11.03.2022 This cross-border research was conducted in frame of the Interreg Euregio Meuse-Rhine project Digital Twin Academy, funded by the European Regional Development Fund of the European Union. SP - 1 EP - 9 ER - TY - JOUR A1 - Zabirov, Alexander A1 - Schleser, Markus A1 - Bucherer, Sebastian T1 - Füge- und Dichtkonzept für einen Leichtbauverbrennungsmotor JF - adhäsion KLEBEN & DICHTEN Y1 - 2021 U6 - http://dx.doi.org/10.1007/s35145-021-0531-5 SN - 2192-8681 VL - 65 IS - 11 SP - 12 EP - 19 PB - Springer Nature CY - Cham ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Adapting Augmented Reality Systems to the users’ needs using Gamification and error solving methods T2 - Procedia CIRP N2 - Animations of virtual items in AR support systems are typically predefined and lack interactions with dynamic physical environments. AR applications rarely consider users’ preferences and do not provide customized spontaneous support under unknown situations. This research focuses on developing adaptive, error-tolerant AR systems based on directed acyclic graphs and error resolving strategies. Using this approach, users will have more freedom of choice during AR supported work, which leads to more efficient workflows. Error correction methods based on CAD models and predefined process data create individual support possibilities. The framework is implemented in the Industry 4.0 model factory at FH Aachen. KW - Augmented Reality KW - Adaptive Systems KW - Gamification KW - Error Recovery Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.procir.2021.11.024 SN - 2212-8271 N1 - Part of special issue: 54th CIRP CMS 2021 - Towards Digitalized Manufacturing 4.0 VL - 104 SP - 140 EP - 145 PB - Elsevier CY - Amsterdam ER - TY - BOOK A1 - Feuerriegel, Uwe T1 - Wärmeübertragung mit EXCEL und VBA: Wärmetechnische Berechnungen und Simulationen effektiv durchführen und professionell dokumentieren N2 - Dieses Lehrbuch vermittelt die Grundlagen der Wärmeübertragung sowie den Umgang mit EXCEL-VBA von der Erstellung von Makros bis zu benutzerdefinierten Funktionen. Es legt damit eine Basis für die schnelle und professionelle Durchführung von Berechnungen und Simulationen. Die angeleitete Erstellung von Berechnungsmodulen mit EXCEL und VBA aus allen wichtigen Bereichen der Wärmeübertragung bildet den inhaltlichen Schwerpunkt. Dazu zählen die stationäre Wärmeleitung und der stationäre Wärmedurchgang, die instationäre Wärmeleitung, der Wärmeübergang bei freier und erzwungener Konvektion sowie die Wärmestrahlung und der Wärmeübergang beim Kondensieren und Sieden. Soweit sinnvoll und möglich werden die Stoffwertekorrelationen und die Berechnungsvorschriften aus dem VDI-Wärmeatlas verwendet. Für ausgewählte Anwendungen werden zudem komplexere Auslegungen und Simulationen von Prozessen der Wärmeübertragung sowie von Wärmeübertragern erstellt. Die Zielgruppen: Studierende in Bachelor- und Masterstudiengängen, Praktiker im Engineering KW - Wärmeübertragung KW - Energietechnik KW - Excel und VBA KW - VDI-Wärmeatlas KW - Wärmeübertrager Y1 - 2021 SN - 978-3-658-35905-8 U6 - http://dx.doi.org/10.1007/978-3-658-35906-5 N1 - In der Bereichsbibliothek Eupener Straße unter der Signatur 21 WDW 39 vorhanden PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Adenacker, J. A1 - Gerhards, Benjamin A1 - Otten, Christian A1 - Schleser, Markus T1 - Laserstrahlschweißen von Aluminium-Kupfer-Werkstoffkombinationen für die Elektromobilität T2 - DVS CONGRESS 2021 Y1 - 2021 SN - 978-3-96144-146-4 N1 - DVS CONGRESS 2021, 14. – 17. September 2021, Essen. Große Schweißtechnische Tagung 2021, DVS CAMPUS 2021. DVS Berichte, Band: 371 SP - 31 EP - 38 PB - DVS Media GmbH CY - Düsseldorf ER - TY - JOUR A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Performance evaluation of skill-based order-assignment in production environments with multi-agent systems JF - IEEE Journal of Emerging and Selected Topics in Industrial Electronics N2 - The fourth industrial revolution introduces disruptive technologies to production environments. One of these technologies are multi-agent systems (MASs), where agents virtualize machines. However, the agent's actual performances in production environments can hardly be estimated as most research has been focusing on isolated projects and specific scenarios. We address this gap by implementing a highly connected and configurable reference model with quantifiable key performance indicators (KPIs) for production scheduling and routing in single-piece workflows. Furthermore, we propose an algorithm to optimize the search of extrema in highly connected distributed systems. The benefits, limits, and drawbacks of MASs and their performances are evaluated extensively by event-based simulations against the introduced model, which acts as a benchmark. Even though the performance of the proposed MAS is, on average, slightly lower than the reference system, the increased flexibility allows it to find new solutions and deliver improved factory-planning outcomes. Our MAS shows an emerging behavior by using flexible production techniques to correct errors and compensate for bottlenecks. This increased flexibility offers substantial improvement potential. The general model in this paper allows the transfer of the results to estimate real systems or other models. KW - cyber-physical production systems KW - event-based simulation KW - multi-agent systems KW - digital factory KW - industrial agents Y1 - 2021 U6 - http://dx.doi.org/10.1109/JESTIE.2021.3108524 SN - 2687-9735 IS - Early Access PB - IEEE CY - New York ER - TY - JOUR A1 - Kasch, Susanne A1 - Schmidt, Thomas A1 - Jahn, Simon A1 - Eichler, Fabian A1 - Thurn, Laura A1 - Bremen, Sebastian T1 - Lösungsansätze und Verfahrenskonzepte zum Laserstrahlschmelzen von Glas JF - Schweissen und Schneiden Y1 - 2021 SN - 0036-7184 VL - 73 IS - Heft 1-2 SP - 32 EP - 39 PB - DVS Verlag CY - Düsseldorf ER -