TY - JOUR A1 - Jildeh, Zaid B. A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Sterilization of Objects, Products, and Packaging Surfaces and Their Characterization in Different Fields of Industry: The Status in 2020 JF - physica status solidi (a) applications and materials science N2 - The treatment method to deactivate viable microorganisms from objects or products is termed sterilization. There are multiple forms of sterilization, each intended to be applied for a specific target, which depends on—but not limited to—the thermal, physical, and chemical stability of that target. Herein, an overview on the currently used sterilization processes in the global market is provided. Different sterilization techniques are grouped under a category that describes the method of treatment: radiation (gamma, electron beam, X-ray, and ultraviolet), thermal (dry and moist heat), and chemical (ethylene oxide, ozone, chlorine dioxide, and hydrogen peroxide). For each sterilization process, the typical process parameters as defined by regulations and the mode of antimicrobial activity are summarized. Finally, the recommended microorganisms that are used as biological indicators to validate sterilization processes in accordance with the rules that are established by various regulatory agencies are summarized. KW - bioburdens KW - sterility tests KW - sterilization efficacy KW - sterilization methods KW - validation methods Y1 - 2021 U6 - http://dx.doi.org/10.1002/pssa.202000732 SN - 1862-6319 N1 - Corresponding author: Michael J. Schöning VL - 218 IS - 13 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Jablonski, Melanie A1 - Münstermann, Felix A1 - Nork, Jasmina A1 - Molinnus, Denise A1 - Muschallik, Lukas A1 - Bongaerts, Johannes A1 - Wagner, Torsten A1 - Keusgen, Michael A1 - Siegert, Petra A1 - Schöning, Michael Josef T1 - Capacitive field‐effect biosensor applied for the detection of acetoin in alcoholic beverages and fermentation broths JF - physica status solidi (a) applications and materials science N2 - An acetoin biosensor based on a capacitive electrolyte–insulator–semiconductor (EIS) structure modified with the enzyme acetoin reductase, also known as butane-2,3-diol dehydrogenase (Bacillus clausii DSM 8716ᵀ), is applied for acetoin detection in beer, red wine, and fermentation broth samples for the first time. The EIS sensor consists of an Al/p-Si/SiO₂/Ta₂O₅ layer structure with immobilized acetoin reductase on top of the Ta₂O₅ transducer layer by means of crosslinking via glutaraldehyde. The unmodified and enzyme-modified sensors are electrochemically characterized by means of leakage current, capacitance–voltage, and constant capacitance methods, respectively. KW - acetoin KW - acetoin reductase KW - alcoholic beverages KW - biosensors KW - capacitive field-effect sensors Y1 - 2021 U6 - http://dx.doi.org/10.1002/pssa.202000765 SN - 1862-6319 VL - 218 IS - 13 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Özsoylu, Dua A1 - Kizildag, Sefa A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Effect of plasma treatment on the sensor properties of a light‐addressable potentiometric sensor (LAPS) JF - physica status solidi a : applications and materials sciences N2 - A light-addressable potentiometric sensor (LAPS) is a field-effect-based (bio-) chemical sensor, in which a desired sensing area on the sensor surface can be defined by illumination. Light addressability can be used to visualize the concentration and spatial distribution of the target molecules, e.g., H+ ions. This unique feature has great potential for the label-free imaging of the metabolic activity of living organisms. The cultivation of those organisms needs specially tailored surface properties of the sensor. O2 plasma treatment is an attractive and promising tool for rapid surface engineering. However, the potential impacts of the technique are carefully investigated for the sensors that suffer from plasma-induced damage. Herein, a LAPS with a Ta2O5 pH-sensitive surface is successfully patterned by plasma treatment, and its effects are investigated by contact angle and scanning LAPS measurements. The plasma duration of 30 s (30 W) is found to be the threshold value, where excessive wettability begins. Furthermore, this treatment approach causes moderate plasma-induced damage, which can be reduced by thermal annealing (10 min at 300 °C). These findings provide a useful guideline to support future studies, where the LAPS surface is desired to be more hydrophilic by O2 plasma treatment. Y1 - 2019 U6 - http://dx.doi.org/10.1002/pssa.201900259 SN - 1862-6319 N1 - Corresponding author: Torsten Wagner VL - 216 IS - 20 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Jung, Alexander A1 - Frotscher, Ralf A1 - Staat, Manfred T1 - Electromechanical model of hiPSC-derived ventricular cardiomyocytes cocultured with fibroblasts T2 - 6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK N2 - The CellDrum provides an experimental setup to study the mechanical effects of fibroblasts co-cultured with hiPSC-derived ventricular cardiomyocytes. Multi-scale computational models based on the Finite Element Method are developed. Coupled electrical cardiomyocyte-fibroblast models (cell level) are embedded into reaction-diffusion equations (tissue level) which compute the propagation of the action potential in the cardiac tissue. Electromechanical coupling is realised by an excitation-contraction model (cell level) and the active stress arising during contraction is added to the passive stress in the force balance, which determines the tissue displacement (tissue level). Tissue parameters in the model can be identified experimentally to the specific sample. Y1 - 2018 ER - TY - CHAP A1 - Schreiber, Marc A1 - Kraft, Bodo A1 - Zündorf, Albert T1 - Metrics Driven Research Collaboration: Focusing on Common Project Goals Continuously T2 - 39th International Conference on Software Engineering, May 20-28, 2017 - Buenos Aires, Argentina N2 - Research collaborations provide opportunities for both practitioners and researchers: practitioners need solutions for difficult business challenges and researchers are looking for hard problems to solve and publish. Nevertheless, research collaborations carry the risk that practitioners focus on quick solutions too much and that researchers tackle theoretical problems, resulting in products which do not fulfill the project requirements. In this paper we introduce an approach extending the ideas of agile and lean software development. It helps practitioners and researchers keep track of their common research collaboration goal: a scientifically enriched software product which fulfills the needs of the practitioner’s business model. This approach gives first-class status to application-oriented metrics that measure progress and success of a research collaboration continuously. Those metrics are derived from the collaboration requirements and help to focus on a commonly defined goal. An appropriate tool set evaluates and visualizes those metrics with minimal effort, and all participants will be pushed to focus on their tasks with appropriate effort. Thus project status, challenges and progress are transparent to all research collaboration members at any time. Y1 - 2017 N1 - Software Engineering in Practice (SEIP). ICSE2017 Vorabversion der Autoren ER - TY - CHAP A1 - Staat, Manfred A1 - Duong, Minh Tuan T1 - Smoothed Finite Element Methods for Nonlinear Solid Mechanics Problems: 2D and 3D Case Studies T2 - Proceedings of the National Science and Technology Conference on Mechanical - Transportation Engineering (NSCMET 2016), 13th October 2016, Hanoi, Vietnam, Vol.2 N2 - The Smoothed Finite Element Method (SFEM) is presented as an edge-based and a facebased techniques for 2D and 3D boundary value problems, respectively. SFEMs avoid shortcomings of the standard Finite Element Method (FEM) with lower order elements such as overly stiff behavior, poor stress solution, and locking effects. Based on the idea of averaging spatially the standard strain field of the FEM over so-called smoothing domains SFEM calculates the stiffness matrix for the same number of degrees of freedom (DOFs) as those of the FEM. However, the SFEMs significantly improve accuracy and convergence even for distorted meshes and/or nearly incompressible materials. Numerical results of the SFEMs for a cardiac tissue membrane (thin plate inflation) and an artery (tension of 3D tube) show clearly their advantageous properties in improving accuracy particularly for the distorted meshes and avoiding shear locking effects. Y1 - 2016 SP - 440 EP - 445 ER - TY - CHAP A1 - Duong, Minh Tuan A1 - Jung, Alexander A1 - Frotscher, Ralf A1 - Staat, Manfred ED - Papadrakakis, M. T1 - A 3D electromechanical FEM-based model for cardiac tissue T2 - ECCOMAS Congress 2016, VII European Congress on Computational Methods in Applied Sciences and Engineering. Crete Island, Greece, 5–10 June 2016 Y1 - 2016 N1 - revised after the conference P11367 ER - TY - CHAP A1 - Frotscher, Ralf A1 - Duong, Minh Tuan A1 - Staat, Manfred T1 - Simulating beating cardiomyocytes with electromechanical coupling T2 - II. International Conference on Biomedical Technology : 28-30 October 2015 Hannover, Germany / T. Lenarz, P. Wriggers (Eds.) Y1 - 2015 SP - 1 EP - 2 ER - TY - CHAP A1 - Frotscher, Ralf A1 - Staat, Manfred ED - Nithiarasu, Perumal T1 - Homogenization of a cardiac tissue construct T2 - CMBE15 : 4th International Conference on Computational & Mathematical Biomedical Engineering ; 29th June - 1st July 2015 ; École Normale Supérieure de Cachan ; Cachan (Paris), France Y1 - 2015 SN - 2227-9385 N1 - Konferenzband unter: http://www.compbiomed.net/getfile.php?type=12/site_documents&id=Proceedings_2227-9385_compressed.pdf SP - 645 EP - 648 PB - CMBE CY - [s.l.] ER - TY - CHAP A1 - Tran, Ngoc Trinh A1 - Staat, Manfred A1 - Stavroulakis, G. E. ED - Onate, E. T1 - A multicriteria method for truss optimization T2 - 11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona Y1 - 2014 SP - 1 EP - 12 ER -