TY - JOUR A1 - Jahnke, Siegfried A1 - Roussel, Johanna A1 - Hombach, Thomas A1 - Kochs, Johannes A1 - Fischbach, Andreas A1 - Huber, Gregor A1 - Scharr, Hanno T1 - phenoSeeder - A robot system for automated handling and phenotyping of individual seeds JF - Plant physiology N2 - The enormous diversity of seed traits is an intriguing feature and critical for the overwhelming success of higher plants. In particular, seed mass is generally regarded to be key for seedling development but is mostly approximated by using scanning methods delivering only two-dimensional data, often termed seed size. However, three-dimensional traits, such as the volume or mass of single seeds, are very rarely determined in routine measurements. Here, we introduce a device named phenoSeeder, which enables the handling and phenotyping of individual seeds of very different sizes. The system consists of a pick-and-place robot and a modular setup of sensors that can be versatilely extended. Basic biometric traits detected for individual seeds are two-dimensional data from projections, three-dimensional data from volumetric measures, and mass, from which seed density is also calculated. Each seed is tracked by an identifier and, after phenotyping, can be planted, sorted, or individually stored for further evaluation or processing (e.g. in routine seed-to-plant tracking pipelines). By investigating seeds of Arabidopsis (Arabidopsis thaliana), rapeseed (Brassica napus), and barley (Hordeum vulgare), we observed that, even for apparently round-shaped seeds of rapeseed, correlations between the projected area and the mass of seeds were much weaker than between volume and mass. This indicates that simple projections may not deliver good proxies for seed mass. Although throughput is limited, we expect that automated seed phenotyping on a single-seed basis can contribute valuable information for applications in a wide range of wild or crop species, including seed classification, seed sorting, and assessment of seed quality. Y1 - 2016 U6 - https://doi.org/10.1104/pp.16.01122 SN - 0032-0889 VL - 172 IS - 3 SP - 1358 EP - 1370 PB - Oxford University Press CY - Oxford ER - TY - CHAP A1 - Poghossian, Arshak A1 - Bronder, Thomas A1 - Scheja, S. A1 - Wu, Chunsheng A1 - Metzger-Boddien, C. A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Label-free Electrostatic Detection of DNA Amplification by PCR Using Capacitive Field-effect Devices T2 - Procedia Engineering N2 - A capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor modified with a positively charged weak polyelectrolyte of poly(allylamine hydrochloride) (PAH)/single-stranded probe DNA (ssDNA) bilayer has been used for a label-free electrostatic detection of pathogen-specific DNA amplification via polymerase chain reaction (PCR). The sensor is able to distinguish between positive and negative PCR solutions, to detect the existence of target DNA amplicons in PCR samples and thus, can be used as tool for a quick verification of DNA amplification and the successful PCR process. Y1 - 2016 U6 - https://doi.org/10.1016/j.proeng.2016.11.512 SN - 1877-7058 N1 - Proceedings of the 30th anniversary Eurosensors Conference – Eurosensors 2016, 4-7. Sepember 2016, Budapest, Hungary VL - Vol. 168 SP - 514 EP - 517 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Bäcker, Matthias A1 - Koch, C. A1 - Geiger, F. A1 - Eber, F. A1 - Gliemann, H. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - A New Class of Biosensors Based on Tobacco Mosaic Virus and Coat Proteins as Enzyme Nanocarrier T2 - Procedia Engineering Y1 - 2016 U6 - https://doi.org/10.1016/j.proeng.2016.11.228 SN - 1877-7058 N1 - Proceedings of the 30th anniversary Eurosensors Conference – Eurosensors 2016, 4-7. Sepember 2016, Budapest, Hungary VL - Vol. 168 SP - 618 EP - 621 ER - TY - CHAP A1 - Kolditz, Melanie A1 - Albin, Thivaharan A1 - Albracht, Kirsten A1 - Brüggemann, Gert-Peter A1 - Abel, Dirk T1 - Isokinematic leg extension training with an industrial robot T2 - 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) June 26-29, 2016. UTown, Singapore Y1 - 2016 U6 - https://doi.org/10.1109/BIOROB.2016.7523750 SP - 950 EP - 955 ER - TY - JOUR A1 - Belavy, Daniel L. A1 - Albracht, Kirsten A1 - Bruggemann, Gert-Peter A1 - Vergroesen, Pieter-Paul A. A1 - Dieen, Jaap H. van T1 - Can exercise positively influence the intervertebral disc? JF - Sports Medicine N2 - To better understand what kinds of sports and exercise could be beneficial for the intervertebral disc (IVD), we performed a review to synthesise the literature on IVD adaptation with loading and exercise. The state of the literature did not permit a systematic review; therefore, we performed a narrative review. The majority of the available data come from cell or whole-disc loading models and animal exercise models. However, some studies have examined the impact of specific sports on IVD degeneration in humans and acute exercise on disc size. Based on the data available in the literature, loading types that are likely beneficial to the IVD are dynamic, axial, at slow to moderate movement speeds, and of a magnitude experienced in walking and jogging. Static loading, torsional loading, flexion with compression, rapid loading, high-impact loading and explosive tasks are likely detrimental for the IVD. Reduced physical activity and disuse appear to be detrimental for the IVD. We also consider the impact of genetics and the likelihood of a ‘critical period’ for the effect of exercise in IVD development. The current review summarises the literature to increase awareness amongst exercise, rehabilitation and ergonomic professionals regarding IVD health and provides recommendations on future directions in research. KW - Intradiscal Pressure KW - Annulus Fibrosus KW - Disc Degeneration KW - Nucleus Pulposus KW - Intervertebral Disc Y1 - 2016 U6 - https://doi.org/10.1007/s40279-015-0444-2 SN - 1179-2035 VL - 46 IS - 4 SP - 473 EP - 485 PB - Springer CY - Berlin ER - TY - JOUR A1 - Kolditz, Melanie A1 - Albin, Thivaharan A1 - Abel, Dirk A1 - Fasse, Alessandro A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Evaluation of foot position and orientation as manipulated variables to control external knee adduction moments in leg extension training JF - Computer methods and programs in biomedicine N2 - Background and Objective Effective leg extension training at a leg press requires high forces, which need to be controlled to avoid training-induced damage. In order to avoid high external knee adduction moments, which are one reason for unphysiological loadings on knee joint structures, both training movements and the whole reaction force vector need to be observed. In this study, the applicability of lateral and medial changes in foot orientation and position as possible manipulated variables to control external knee adduction moments is investigated. As secondary parameters both the medio-lateral position of the center of pressure and the frontal-plane orientation of the reaction force vector are analyzed. Methods Knee adduction moments are estimated using a dynamic model of the musculoskeletal system together with the measured reaction force vector and the motion of the subject by solving the inverse kinematic and dynamic problem. Six different foot conditions with varying positions and orientations of the foot in a static leg press are evaluated and compared to a neutral foot position. Results Both lateral and medial wedges under the foot and medial and lateral shifts of the foot can influence external knee adduction moments in the presented study with six healthy subjects. Different effects are observed with the varying conditions: the pose of the leg is changed and the direction and center of pressure of the reaction force vector is influenced. Each effect results in a different direction or center of pressure of the reaction force vector. Conclusions The results allow the conclusion that foot position and orientation can be used as manipulated variables in a control loop to actively control knee adduction moments in leg extension training. KW - External knee adduction moments KW - Manipulated variables KW - Inverse dynamic problem KW - Inverse kinematic problem KW - Musculoskeletal model Y1 - 2016 U6 - https://doi.org/10.1016/j.cmpb.2016.09.005 SN - 0169-2607 N1 - Part of special issue: "SI: Personalised Models and System Identification" VL - 171 SP - 81 EP - 86 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Levers, A. A1 - Staat, Manfred A1 - Laack, Walter van T1 - Analysis of the long-term effect of the MBST® nuclear magnetic resonance therapy on gonarthrosis JF - Orthopedic Practice Y1 - 2016 VL - 47 IS - 11 SP - 521 EP - 528 ER - TY - CHAP A1 - Tran, Ngoc Trinh A1 - Tran, Thanh Ngoc A1 - Matthies, Hermann G. A1 - Stavroulakis, Georgios Eleftherios A1 - Staat, Manfred T1 - FEM Shakedown of uncertain structures by chance constrained programming T2 - PAMM Proceedings in Applied Mathematics and Mechanics Y1 - 2016 U6 - https://doi.org/10.1002/pamm.201610346 SN - 1617-7061 N1 - Special Issue: Joint 87th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) and Deutsche Mathematiker-Vereinigung VL - 16 IS - 1 SP - 715 EP - 716 ER - TY - CHAP A1 - Staat, Manfred A1 - Duong, Minh Tuan T1 - Smoothed Finite Element Methods for Nonlinear Solid Mechanics Problems: 2D and 3D Case Studies T2 - Proceedings of the National Science and Technology Conference on Mechanical - Transportation Engineering (NSCMET 2016), 13th October 2016, Hanoi, Vietnam, Vol.2 N2 - The Smoothed Finite Element Method (SFEM) is presented as an edge-based and a facebased techniques for 2D and 3D boundary value problems, respectively. SFEMs avoid shortcomings of the standard Finite Element Method (FEM) with lower order elements such as overly stiff behavior, poor stress solution, and locking effects. Based on the idea of averaging spatially the standard strain field of the FEM over so-called smoothing domains SFEM calculates the stiffness matrix for the same number of degrees of freedom (DOFs) as those of the FEM. However, the SFEMs significantly improve accuracy and convergence even for distorted meshes and/or nearly incompressible materials. Numerical results of the SFEMs for a cardiac tissue membrane (thin plate inflation) and an artery (tension of 3D tube) show clearly their advantageous properties in improving accuracy particularly for the distorted meshes and avoiding shear locking effects. Y1 - 2016 SP - 440 EP - 445 ER - TY - CHAP A1 - Hafner, David A1 - Ochs, Peter A1 - Weickert, Joachim A1 - Reißel, Martin ED - Rosenhahn, Bodo T1 - FSI Schemes : Fast Semi-Iterative Solvers for PDEs and Optimisation Methods T2 - Pattern Recognition : 38th German Conference, GCPR 2016, Hannover, Germany, September 12-15, 2016, Proceedings Y1 - 2016 SN - 978-3-319-45886-1 U6 - https://doi.org/10.1007/978-3-319-45886-1_8 N1 - Lecture Notes in Computer Science; Vol. 9796 SP - 91 EP - 102 PB - Springer ER -