TY - JOUR A1 - Bassam, Rasha A1 - Hescheler, Jürgen A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard A1 - Digel, Ilya T1 - Effects of spermine NONOate and ATP on the thermal stability of hemoglobin JF - BMC Biophysics N2 - Background Minor changes in protein structure induced by small organic and inorganic molecules can result in significant metabolic effects. The effects can be even more profound if the molecular players are chemically active and present in the cell in considerable amounts. The aim of our study was to investigate effects of a nitric oxide donor (spermine NONOate), ATP and sodium/potassium environment on the dynamics of thermal unfolding of human hemoglobin (Hb). The effect of these molecules was examined by means of circular dichroism spectrometry (CD) in the temperature range between 25°C and 70°C. The alpha-helical content of buffered hemoglobin samples (0.1 mg/ml) was estimated via ellipticity change measurements at a heating rate of 1°C/min. Results Major results were: 1) spermine NONOate persistently decreased the hemoglobin unfolding temperature T u irrespectively of the Na + /K + environment, 2) ATP instead increased the unfolding temperature by 3°C in both sodium-based and potassium-based buffers and 3) mutual effects of ATP and NO were strongly influenced by particular buffer ionic compositions. Moreover, the presence of potassium facilitated a partial unfolding of alpha-helical structures even at room temperature. Conclusion The obtained data might shed more light on molecular mechanisms and biophysics involved in the regulation of protein activity by small solutes in the cell. KW - Nitric Oxide Donor KW - NONOate KW - Circular Dichroism KW - Nitric Oxide Y1 - 2012 U6 - http://dx.doi.org/10.1186/2046-1682-5-16 SN - 2046-1682 VL - 5 PB - BioMed Central CY - London ER - TY - JOUR A1 - Gutheil, Inge A1 - Berg, Tommy A1 - Grotendorst, Johannes T1 - Performance Analysis of Parallel Eigensolvers of two Libraries on BlueGene/P JF - Journal of Mathematics and Systems Science N2 - Many applications in computational science and engineering require the computation of eigenvalues and vectors of dense symmetric or Hermitian matrices. For example, in DFT (density functional theory) calculations on modern supercomputers 10% to 30% of the eigenvalues and eigenvectors of huge dense matrices have to be calculated. Therefore, performance and parallel scaling of the used eigensolvers is of upmost interest. In this article different routines of the linear algebra packages ScaLAPACK and Elemental for parallel solution of the symmetric eigenvalue problem are compared concerning their performance on the BlueGene/P supercomputer. Parameters for performance optimization are adjusted for the different data distribution methods used in the two libraries. It is found that for all test cases the new library Elemental which uses a two-dimensional element by element distribution of the matrices to the processors shows better performance than the old ScaLAPACK library which uses a block-cyclic distribution. KW - performance analysis KW - Elemental KW - ScaLAPACK KW - eigensolvers KW - Numerical linear algebra Y1 - 2012 U6 - http://dx.doi.org/10.17265/2159-5291/2012.04.003 SN - 2159-5291 VL - 2 IS - 4 SP - 231 EP - 236 PB - David Publishing CY - Libertyville ER - TY - JOUR A1 - Grotendorst, Johannes T1 - IAS Winter School: Hierarchical Methods for Dynamics in Complex Molecular Systems JF - Innovatives Supercomputing in Deutschland : inSiDE. 10 (2012), H. 1 Y1 - 2012 SP - 104 PB - - ER - TY - JOUR A1 - Atlas, Glen A1 - Brealey, David A1 - Dhar, Sunil A1 - Dikta, Gerhard A1 - Singer, Meryvn T1 - Additional hemodynamic measurements with an esophageal Doppler monitor: a preliminary report of compliance, force, kinetic energy, and afterload in the clinical setting JF - Journal of clinical monitoring and computing N2 - The esophageal Doppler monitor (EDM) is a minimally-invasive hemodynamic device which evaluates both cardiac output (CO), and fluid status, by estimating stroke volume (SV) and calculating heart rate (HR). The measurement of these parameters is based upon a continuous and accurate approximation of distal thoracic aortic blood flow. Furthermore, the peak velocity (PV) and mean acceleration (MA), of aortic blood flow at this anatomic location, are also determined by the EDM. The purpose of this preliminary report is to examine additional clinical hemodynamic calculations of: compliance (C), kinetic energy (KE), force (F), and afterload (TSVRi). These data were derived using both velocity-based measurements, provided by the EDM, as well as other contemporaneous physiologic parameters. Data were obtained from anesthetized patients undergoing surgery or who were in a critical care unit. A graphical inspection of these measurements is presented and discussed with respect to each patient’s clinical situation. When normalized to each of their initial values, F and KE both consistently demonstrated more discriminative power than either PV or MA. The EDM offers additional applications for hemodynamic monitoring. Further research regarding the accuracy, utility, and limitations of these parameters is therefore indicated. KW - Acceleration KW - Velocity KW - Kinetic energy KW - Force KW - Compliance KW - Afterload KW - Contractility KW - Volume status KW - Esophageal Doppler monitor Y1 - 2012 SN - 1573-2614 U6 - http://dx.doi.org/10.1007/s10877-012-9386-5 IS - 26 SP - 473 EP - 482 PB - Springer Nature CY - London ER - TY - JOUR A1 - Schusser, Sebastian A1 - Poghossian, Arshak A1 - Bäcker, Matthias A1 - Leinhos, Marcel A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Characterization of biodegradable polymers with capacitive field-effect sensors JF - Sensors and actuators B: Chemical N2 - In vitro studies of the degradation kinetic of biopolymers are essential for the design and optimization of implantable biomedical devices. In the presented work, a field-effect capacitive sensor has been applied for the real-time and in situ monitoring of degradation processes of biopolymers for the first time. The polymer-covered field-effect sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. The feasibility of this approach has been experimentally proven by using the commercially available biomedical polymer poly(D,L-lactic acid) (PDLLA) as a model system. PDLLA films of different thicknesses were deposited on the Ta₂O₅-gate surface of the field-effect structure from a polymer solution by means of spin-coating method. The polymer-modified field-effect sensors have been characterized by means of capacitance–voltage and impedance-spectroscopy method. The degradation of the PDLLA was accelerated by changing the degradation medium from neutral (pH 7.2) to alkaline (pH 9) condition, resulting in drastic changes in the capacitance and impedance spectra of the polymer-modified field-effect sensor. KW - Impedance spectroscopy KW - C–V method KW - Real-time monitoring KW - Poly(d,l-lacticacid) KW - (Bio)degradation KW - Field-effect sensor Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.snb.2012.07.099 SN - 0925-4005 N1 - Part of special issue "Selected Papers from the 14th International Meeting on Chemical Sensors" VL - 187 SP - 2 EP - 7 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Friedrich, Peter A1 - Berger, Jörg A1 - Rysstad, Gunnar A1 - Schöning, Michael Josef A1 - Keusgen, Michael T1 - Realisation of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry JF - Sensors and Actuators B: Chemical N2 - A calorimetric gas sensor is presented for the monitoring of vapour-phase H2O2 at elevated temperature during sterilisation processes in aseptic food industry. The sensor was built up on a flexible polyimide foil (thickness: 25 μm) that has been chosen due to its thermal stability and low thermal conductivity. The sensor set-up consists of two temperature-sensitive platinum thin-film resistances passivated by a layer of SU-8 photo resist and catalytically activated by manganese(IV) oxide. Instead of an active heating structure, the calorimetric sensor utilises the elevated temperature of the evaporated H2O2 aerosol. In an experimental test rig, the sensor has shown a sensitivity of 4.78 °C/(%, v/v) in a H2O2 concentration range of 0%, v/v to 8%, v/v. Furthermore, the sensor possesses the same, unchanged sensor signal even at varied medium temperatures between 210 °C and 270 °C of the gas stream. At flow rates of the gas stream from 8 m3/h to 12 m3/h, the sensor has shown only a slightly reduced sensitivity at a low flow rate of 8 m3/h. The sensor characterisation demonstrates the suitability of the calorimetric gas sensor for monitoring the efficiency of industrial sterilisation processes. KW - Sterilisation process KW - Hydrogen peroxide KW - Polyimide KW - Calorimetric gas sensor Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.snb.2011.01.032 SN - 0925-4005 N1 - Part of special issue "Eurosensors XXIV, 2010" VL - 170 SP - 60 EP - 66 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Kaneko, Kazumi A1 - Matsuo, Akira A1 - Wagner, Torsten A1 - Kanoh, Shiníchiro A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Miniaturized chemical imaging sensor system using an OLED display panel JF - Sensors and Actuators B: Chemical N2 - The chemical imaging sensor is a semiconductor-based chemical sensor that can visualize the two-dimensional distribution of specific ions or molecules in the solution. In this study, we developed a miniaturized chemical imaging sensor system with an OLED display panel as a light source that scans the sensor plate. In the proposed configuration, the display panel is placed directly below the sensor plate and illuminates the back surface. The measured area defined by illumination can be arbitrarily customized to fit the size and the shape of the sample to be measured. The waveform of the generated photocurrent, the current–voltage characteristics and the pH sensitivity were investigated and pH imaging with this miniaturized system was demonstrated. KW - LAPS KW - Light-addressable potentiometric sensor KW - Chemical imaging sensor KW - Organic light-emitting diode display Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.snb.2011.02.029 SN - 0925-4005 N1 - Part of special issue "Eurosensors XXIV, 2010" VL - 170 SP - 82 EP - 87 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kotliar, Konstantin A1 - Lanzl, Ines M. A1 - Hanssen, Henner A1 - Eberhardt, Karla A1 - Vilser, Walthard A1 - Halle, Martin A1 - Heemann, Uwe A1 - Schmidt-Trucksäss, Arno A1 - Baumann, Marcus T1 - Does increased blood pressure rather than aging influence retinal pulse wave velocity? JF - Investigative Ophthalmology & Visual Science, IOVS N2 - Purpose: It was demonstrated previously that retinal pulse wave velocity (rPWV) as a measure of retinal arterial stiffness is increased in aged anamnestically healthy volunteers compared with young healthy subjects. Using novel methodology of rPWV assessment this finding was confirmed and investigated whether it might relate to the increased blood pressure usually accompanying the aging process, rather than to the aging itself. Methods: A total of 12 young 25.5-year-old (24.0–28.8) [median(1st quartile–3rd quartile)] and 12 senior 68.5-year-old (63.8–71.8) anamnestically healthy volunteers; and 12 senior 63.0-year-old (60.8–65.0) validated healthy volunteers and 12 young 33.0-year-old (29.5–35.0) hypertensive patients were examined. Time-dependent alterations of vessel diameter were assessed by the Dynamic Vessel Analyzer in a retinal artery of each subject. The data were filtered and processed using mathematical signal analysis and rPWVs were calculated. Results: rPWV amounted to 1200 (990-1470) RU (relative units)/s in the hypertensive group and to 1040 (700-2230) RU/s in anamnestically healthy seniors. These differed significantly from rPWVs in young healthy group (410 [280–500] RU/s) and in validated healthy seniors (400 [320–510] RU/s). rPWV associated with age and mean arterial pressure (MAP) in the pooled cohort excluded validated healthy seniors. In a regression model these associations remain when alternately adjusted for MAP and age. When including validated healthy seniors in the pooled cohort only association with MAP remains. Conclusions: Both aging (with not excluded cardiovascular risk factors) and mild hypertension are associated with elevated rPWV. rPWV increases to a similar extent both in young mildly hypertensive subjects and in aged anamnestically healthy persons. Healthy aging is not associated with increased rPWV. Y1 - 2012 U6 - http://dx.doi.org/10.1167/iovs.11-8815 SN - 0146-0404 VL - 53 IS - 4 SP - 2119 EP - 2126 PB - ARVO CY - Rockville, Md. ER - TY - JOUR A1 - Novacek, V. A1 - Tran, Thanh Ngoc A1 - Klinge, U. A1 - Tolba, R. H. A1 - Staat, Manfred A1 - Bronson, D. G. A1 - Miesse, A. M. A1 - Whiffen, J. A1 - Turquier, F. T1 - Finite element modelling of stapled colorectal end-to-end anastomosis : Advantages of variable height stapler design JF - Journal of Biomechanics N2 - The impact of surgical staplers on tissues has been studied mostly in an empirical manner. In this paper, finite element method was used to clarify the mechanics of tissue stapling and associated phenomena. Various stapling modalities and several designs of circular staplers were investigated to evaluate the impact of the device on tissues and mechanical performance of the end-to-end colorectal anastomosis. Numerical simulations demonstrated that a single row of staples is not adequate to resist leakage due to non-linear buckling and opening of the tissue layers between two adjacent staples. Compared to the single staple row configuration, significant increase in stress experienced by the tissue at the inner staple rows was observed in two and three rows designs. On the other hand, adding second and/or third staple row had no effect on strain in the tissue inside the staples. Variable height design with higher staples in outer rows significantly reduced the stresses and strains in outer rows when compared to the same configuration with flat cartridge. KW - Variable height stapler design KW - Anastomotic leakage KW - Finite element modelling KW - End-to-end colorectal anastomosis KW - Surgical staplers Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.jbiomech.2012.07.021 SN - 1873-2380 VL - 45 IS - 115 SP - 2693 EP - 2697 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nguyen, Nhu Huynh A1 - Duong, Minh Tuan A1 - Tran, Thanh Ngoc A1 - Pham, Phu Tinh A1 - Grottke, O. A1 - Tolba, R. A1 - Staat, Manfred T1 - Influence of a freeze–thaw cycle on the stress–stretch curves of tissues of porcine abdominal organs JF - Journal of Biomechanics N2 - The paper investigates both fresh porcine spleen and liver and the possible decomposition of these organs under a freeze–thaw cycle. The effect of tissue preservation condition is an important factor which should be taken into account for protracted biomechanical tests. In this work, tension tests were conducted for a large number of tissue specimens from twenty pigs divided into two groups of 10. Concretely, the first group was tested in fresh state; the other one was tested after a freeze-thaw cycle which simulates the conservation conditions before biomechanical experiments. A modified Fung model for isotropic behavior was adopted for the curve fitting of each kind of tissues. Experimental results show strong effects of the realistic freeze–thaw cycle on the capsule of elastin-rich spleen but negligible effects on the liver which virtually contains no elastin. This different behavior could be explained by the autolysis of elastin by elastolytic enzymes during the warmer period after thawing. Realistic biomechanical properties of elastin-rich organs can only be expected if really fresh tissue is tested. The observations are supported by tests of intestines. KW - Autolysis KW - Decomposition KW - Freeze–thaw process KW - Spleen KW - Liver Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.jbiomech.2012.07.008 SN - 1873-2380 VL - 45 IS - 14 SP - 2382 EP - 2386 PB - Elsevier CY - Amsterdam ER -