TY - JOUR A1 - Engelmann, Ulrich M. A1 - Simsek, Beril A1 - Shalaby, Ahmed A1 - Krause, Hans-Joachim T1 - Key contributors to signal generation in frequency mixing magnetic detection (FMMD): an in silico study JF - Sensors N2 - Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and overall improve its applicability in biosensing, matching combinations of external field parameters and internal particle properties are being sought to advance FMMD. In this study, we systematically probe the aforementioned interaction with coupled Néel–Brownian dynamic relaxation simulations to examine how key MNP properties as well as applied field parameters affect the frequency mixing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic response, with the strongest contributions from the largest particles. The drive field amplitude dominates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP properties and parameters of the setup towards optimal FMMD signal generation, our findings suggest choosing large particles of core sizes dc > 25 nm nm with narrow size distributions (σ < 0.1) to minimize the required drive field amplitude. This allows potential improvements of FMMD as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and magnetic immunoassays. KW - key performance indicators KW - magnetic biosensing KW - coupled Néel–Brownian relaxation dynamics KW - frequency mixing magnetic detection KW - magnetic relaxation KW - micromagnetic simulation KW - magnetic nanoparticles Y1 - 2024 U6 - https://doi.org/10.3390/s24061945 SN - 1424-8220 N1 - This article belongs to the Special Issue "Advances in Magnetic Sensors and Their Applications" VL - 24 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Kozhahmetova, Marzhan A1 - Sherelkhan, Dinara K. A1 - Tauanov, Zhandos T1 - Hydrogenotrophic methanogenesis in coal-bearing environments: Methane production, carbon sequestration, and hydrogen availability JF - International Journal of Hydrogen Energy N2 - Methane is a valuable energy source helping to mitigate the growing energy demand worldwide. However, as a potent greenhouse gas, it has also gained additional attention due to its environmental impacts. The biological production of methane is performed primarily hydrogenotrophically from H2 and CO2 by methanogenic archaea. Hydrogenotrophic methanogenesis also represents a great interest with respect to carbon re-cycling and H2 storage. The most significant carbon source, extremely rich in complex organic matter for microbial degradation and biogenic methane production, is coal. Although interest in enhanced microbial coalbed methane production is continuously increasing globally, limited knowledge exists regarding the exact origins of the coalbed methane and the associated microbial communities, including hydrogenotrophic methanogens. Here, we give an overview of hydrogenotrophic methanogens in coal beds and related environments in terms of their energy production mechanisms, unique metabolic pathways, and associated ecological functions. KW - Coal KW - Methanogenesis KW - Methane KW - Hydrogenotrophic methanogens KW - H2 Y1 - 2024 U6 - https://doi.org/10.1016/j.ijhydene.2023.09.223 SN - 1879-3487 (online) SN - 0360-3199 (print) VL - 52 IS - Part D SP - 1264 EP - 1277 PB - Elsevier CY - New York ER - TY - JOUR A1 - Pieronek, Lukas A1 - Kleefeld, Andreas T1 - On trajectories of complex-valued interior transmission eigenvalues JF - Inverse problems and imaging : IPI N2 - This paper investigates the interior transmission problem for homogeneous media via eigenvalue trajectories parameterized by the magnitude of the refractive index. In the case that the scatterer is the unit disk, we prove that there is a one-to-one correspondence between complex-valued interior transmission eigenvalue trajectories and Dirichlet eigenvalues of the Laplacian which turn out to be exactly the trajectorial limit points as the refractive index tends to infinity. For general simply-connected scatterers in two or three dimensions, a corresponding relation is still open, but further theoretical results and numerical studies indicate a similar connection. KW - Interior transmission problem KW - Eigenvalue trajectories KW - Complex-valued eigenvalues Y1 - 2024 U6 - https://doi.org/10.3934/ipi.2023041 SN - 1930-8337 (Print) SN - 1930-8345 (Online) VL - 18 IS - 2 SP - 480 EP - 516 PB - AIMS CY - Springfield, Mo ER - TY - JOUR A1 - Oehlenschläger, Katharina A1 - Volkmar, Marianne A1 - Stiefelmaier, Judith A1 - Langsdorf, Alexander A1 - Holtmann, Dirk A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - New insights into the influence of pre-culture on robust solvent production of C. acetobutylicum JF - Applied Microbiology and Biotechnology N2 - Clostridia are known for their solvent production, especially the production of butanol. Concerning the projected depletion of fossil fuels, this is of great interest. The cultivation of clostridia is known to be challenging, and it is difficult to achieve reproducible results and robust processes. However, existing publications usually concentrate on the cultivation conditions of the main culture. In this paper, the influence of cryo-conservation and pre-culture on growth and solvent production in the resulting main cultivation are examined. A protocol was developed that leads to reproducible cultivations of Clostridium acetobutylicum. Detailed investigation of the cell conservation in cryo-cultures ensured reliable cell growth in the pre-culture. Moreover, a reason for the acid crash in the main culture was found, based on the cultivation conditions of the pre-culture. The critical parameter to avoid the acid crash and accomplish the shift to the solventogenesis of clostridia is the metabolic phase in which the cells of the pre-culture were at the time of inoculation of the main culture; this depends on the cultivation time of the pre-culture. Using cells from the exponential growth phase to inoculate the main culture leads to an acid crash. To achieve the solventogenic phase with butanol production, the inoculum should consist of older cells which are in the stationary growth phase. Considering these parameters, which affect the entire cultivation process, reproducible results and reliable solvent production are ensured. KW - Pre-culture KW - Metabolic shift KW - Acid crash KW - C. acetobutylicum KW - ABE KW - Butanol Y1 - 2024 U6 - https://doi.org/10.1007/s00253-023-12981-8 SN - 1432-0614 VL - 108 PB - Springer CY - Berlin, Heidelberg ER - TY - JOUR A1 - Windmüller, Anna A1 - Schaps, Kristian A1 - Zantis, Frederik A1 - Domgans, Anna A1 - Taklu, Bereket Woldegbreal A1 - Yang, Tingting A1 - Tsai, Chih-Long A1 - Schierholz, Roland A1 - Yu, Shicheng A1 - Kungl, Hans A1 - Tempel, Hermann A1 - Dunin-Borkowski, Rafal E. A1 - Hüning, Felix A1 - Hwang, Bing Joe A1 - Eichel, Rüdiger-A. T1 - Electrochemical activation of LiGaO2: implications for ga-doped garnet solid electrolytes in li-metal batteries JF - ACS Applied Materials & Interfaces N2 - Ga-doped Li7La3Zr2O12 garnet solid electrolytes exhibit the highest Li-ion conductivities among the oxide-type garnet-structured solid electrolytes, but instabilities toward Li metal hamper their practical application. The instabilities have been assigned to direct chemical reactions between LiGaO2 coexisting phases and Li metal by several groups previously. Yet, the understanding of the role of LiGaO2 in the electrochemical cell and its electrochemical properties is still lacking. Here, we are investigating the electrochemical properties of LiGaO2 through electrochemical tests in galvanostatic cells versus Li metal and complementary ex situ studies via confocal Raman microscopy, quantitative phase analysis based on powder X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. The results demonstrate considerable and surprising electrochemical activity, with high reversibility. A three-stage reaction mechanism is derived, including reversible electrochemical reactions that lead to the formation of highly electronically conducting products. The results have considerable implications for the use of Ga-doped Li7La3Zr2O12 electrolytes in all-solid-state Li-metal battery applications and raise the need for advanced materials engineering to realize Ga-doped Li7La3Zr2O12for practical use. KW - LiGaO2 KW - garnet solid electrolyte KW - ga-doping KW - Li7La3Zr2O12 KW - solid-state battery Y1 - 2024 U6 - https://doi.org/10.1021/acsami.4c03729 SN - 39181–3919 VL - 16 IS - 30 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Eichler, Fabian A1 - Balc, Nicolae A1 - Bremen, Sebastian A1 - Nink, Philipp T1 - Investigation of laser powder bed fusion parameters with respect to their influence on the thermal conductivity of 316L samples JF - Journal of Manufacturing and Materials Processing N2 - The thermal conductivity of components manufactured using Laser Powder Bed Fusion (LPBF), also called Selective Laser Melting (SLM), plays an important role in their processing. Not only does a reduced thermal conductivity cause residual stresses during the process, but it also makes subsequent processes such as the welding of LPBF components more difficult. This article uses 316L stainless steel samples to investigate whether and to what extent the thermal conductivity of specimens can be influenced by different LPBF parameters. To this end, samples are set up using different parameters, orientations, and powder conditions and measured by a heat flow meter using stationary analysis. The heat flow meter set-up used in this study achieves good reproducibility and high measurement accuracy, so that comparative measurements between the various LPBF influencing factors to be tested are possible. In summary, the series of measurements show that the residual porosity of the components has the greatest influence on conductivity. The degradation of the powder due to increased recycling also appears to be detectable. The build-up direction shows no detectable effect in the measurement series. KW - Additive manufacturing KW - LPBF KW - SLM KW - Thermal conductivity KW - 316L Y1 - 2024 U6 - https://doi.org/10.3390/jmmp8040166 SN - 2504-4494 N1 - Corresponding author: Fabian Eichler VL - 8 IS - 4 PB - MDPI CY - Basel ER -