TY - JOUR A1 - Chen, Bixia A1 - Schoemberg, Tobias A1 - Kraff, Oliver A1 - Dammann, Philipp A1 - Bitz, Andreas A1 - Schlamann, Marc A1 - Quick, Harald H. A1 - Ladd, Mark E. A1 - Sure, Ulrich A1 - Wrede, Karsten H. T1 - Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study JF - Magnetic Resonance Materials in Physics, Biology and Medicine N2 - Objective This study assesses and quantifies impairment of postoperative magnetic resonance imaging (MRI) at 7 Tesla (T) after implantation of titanium cranial fixation plates (CFPs) for neurosurgical bone flap fixation. Materials and methods The study group comprised five patients who were intra-individually examined with 3 and 7 T MRI preoperatively and postoperatively (within 72 h/3 months) after implantation of CFPs. Acquired sequences included T₁-weighted magnetization-prepared rapid-acquisition gradient-echo (MPRAGE), T₂-weighted turbo-spin-echo (TSE) imaging, and susceptibility-weighted imaging (SWI). Two experienced neurosurgeons and a neuroradiologist rated image quality and the presence of artifacts in consensus reading. Results Minor artifacts occurred around the CFPs in MPRAGE and T2 TSE at both field strengths, with no significant differences between 3 and 7 T. In SWI, artifacts were accentuated in the early postoperative scans at both field strengths due to intracranial air and hemorrhagic remnants. After resorption, the brain tissue directly adjacent to skull bone could still be assessed. Image quality after 3 months was equal to the preoperative examinations at 3 and 7 T. Conclusion Image quality after CFP implantation was not significantly impaired in 7 T MRI, and artifacts were comparable to those in 3 T MRI. Y1 - 2016 U6 - https://doi.org/10.1007/s10334-016-0548-1 SN - 1352-8661 VL - 29 IS - 3 SP - 389 EP - 398 PB - Springer CY - Berlin ER - TY - JOUR A1 - Orzada, Stephan A1 - Ladd, Mark E. A1 - Bitz, Andreas T1 - A method to approximate maximum local SAR in multichannel transmit MR systems without transmit phase information JF - Magnetic Resonance in Medicine N2 - Purpose To calculate local specific absorption rate (SAR) correctly, both the amplitude and phase of the signal in each transmit channel have to be known. In this work, we propose a method to derive a conservative upper bound for the local SAR, with a reasonable safety margin without knowledge of the transmit phases of the channels. Methods The proposed method uses virtual observation points (VOPs). Correction factors are calculated for each set of VOPs that prevent underestimation of local SAR when the VOPs are applied with the correct amplitudes but fixed phases. Results The proposed method proved to be superior to the worst-case calculation based on the maximum eigenvalue of the VOPs. The mean overestimation for six coil setups could be reduced, whereas no underestimation of the maximum local SAR occurred. In the best investigated case, the overestimation could be reduced from a factor of 3.3 to a factor of 1.7. Conclusion The upper bound for the local SAR calculated with the proposed method allows a fast estimation of the local SAR based on power measurements in the transmit channels and facilitates SAR monitoring in systems that do not have the capability to monitor transmit phases Y1 - 2016 U6 - https://doi.org/10.1002/mrm.26398 SN - 1522-2594 VL - 78 IS - 2 SP - 805 EP - 811 PB - International Society for Magnetic Resonance in Medicine ER - TY - JOUR A1 - Fiedler, Thomas M. A1 - Ladd, Mark E. A1 - Bitz, Andreas T1 - RF safety assessment of a bilateral four-channel transmit/receive 7 Tesla breast coil: SAR versus temperature limits JF - Medical Physics Y1 - 2017 U6 - https://doi.org/10.1002/mp.12034 N1 - This article is corrected by: Errata: Erratum: “RF safety assessment of a bilateral four-channel transmit/receive 7 Tesla breast coil: SAR versus tissue temperature limits” [Med. Phys. 44(1), 143–157 (2017)] Volume 44, Issue 2, 772 VL - 44 IS - 1 SP - 143 EP - 157 ER - TY - JOUR A1 - Noureddine, Yacine A1 - Kraff, Oliver A1 - Ladd, Mark E. A1 - Wrede, Karsten H. A1 - Chen, Bixia A1 - Quick, Harald H. A1 - Schaefers, Gregor A1 - Bitz, Andreas T1 - In vitro and in silico assessment of RF-induced heating around intracranial aneurysm clips at 7 Tesla JF - Magnetic Resonance in Medicine Y1 - 2017 U6 - https://doi.org/10.1002/mrm.26650 SN - 1522-2594 IS - Early view PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Fiedler, Thomas M. A1 - Ladd, Mark E. A1 - Bitz, Andreas T1 - SAR Simulations & Safety JF - NeuroImage Y1 - 2017 U6 - https://doi.org/10.1016/j.neuroimage.2017.03.035 SN - 1053-8119 IS - Epub ahead of print PB - Elsevier CY - Amsterdam ER - TY - RPRT A1 - Kesti, Jyrki A1 - Mononen, Tarmo A1 - Lautso, Petteri A1 - Döring, Bernd A1 - Reger, Vitali A1 - Holopainen, R. A1 - Jung, N. A1 - Shemeikka, J. A1 - Nieminen, J. A1 - Reda, F. A1 - Lawson, Mark A1 - Botti, Andrea A1 - Hall, R. A1 - Zold, A. A1 - Buday, T. T1 - Zero energy solutions for multifunctional steel intensive commercial buildings (ZEMUSIC) - EUR 27627 N2 - The broad commercial objective of this project was the sustainable value creation in steel building technology by addressing the ways in which significant energy reductions can be made in the operation phase of multi-storey commercial buildings. A review on energy efficient commercial buildings in Europe has been carried out consisting of several case studies from different countries. The project included development of zero-energy concepts for reducing energy demand as well as concepts for heating, cooling and ventilation systems by utilising renewable energy sources in three different climates. Also alternative structural frame solutions were developed and analyzed in respect of structural and MEP (mechanical, electrical and plumbing solutions) features. An innovative long span floor system with integrated MEP routings promises a cost effective alternative for sophisticated ventilation distribution and radiant heating and cooling systems, allowing for high energy efficiency and high quality interior climate. The report includes also review of best architectural practices for integrated renewable energy solutions including different design strategies for building facades of zero energy buildings. Interesting results and design basis are also presented for steel energy pile concept, where structural foundation piles are utilized for ground energy harvesting. Life cycle cost calculations for near zero energy office building based on developed technologies show that a near zero energy construction is also profitable. The results and work methods of the project have been summarized in the form of design guidance that offers designers the knowledge gained in a form that can be easily understood. KW - steel KW - iron and steel industry KW - resistance of materials KW - materials technology KW - metal structure KW - research project KW - building industry KW - building materials KW - renewable energy KW - designs and models KW - research report KW - guide Y1 - 2015 SN - 978-92-79-54071-4 U6 - https://doi.org/10.2777/111520 SN - 1831-9424 N1 - Enthalten: Appendix Design Guide: Deliverable Report WP6.4 Design Guide for steel intensive nearly zero office buildings (83 Seiten) PB - Publications Office of the European Union CY - Luxembourg ER - TY - RPRT A1 - Feldmann, M. A1 - Kuhnhenne, M. A1 - Döring, Bernd A1 - Pyschny, D. A1 - Lawson, R.M. A1 - Chuter, R.D. A1 - Boudjabeur, S. A1 - Lecomte-Labory, F. A1 - Airaksinen, M. A1 - Heikkinen, J. A1 - Laamanen, J. A1 - Albart, P. A1 - D'Haeyer, R. A1 - Chica, J.A. A1 - Maseda, J.M. A1 - Amundarain, A. A1 - Rips, M.O. A1 - Nuñez, J.A. A1 - Macías, O. A1 - Beguin, P. A1 - Ben Larbi, A. T1 - Energy and thermal improvements for construction in steel (ETHICS) - EUR 26010 N2 - ETHICS is concerned with evaluating, measuring and making improvements in the thermal and energy performance of steel-clad and steel-framed buildings. It addresses basic building physics performance at a laboratory and full-scale level, and the preparation of design guidance for commercial, industrial and residential buildings. It includes the development of design tools to assist users in assessing whole-building performance, and calibrates these tools against whole-building measurements, which will be obtained from this research. Opportunities for renewable energy and other energy-saving features will be assessed. This project focuses on objectives that are of particular interest for the design of new steel constructions regarding energy efficiency. ETHICS investigates the as-built performance by on-site tests regarding air tightness and heat transfer properties of the building envelope and by monitoring the energy consumption and thermal comfort of selected up-to-date steel buildings. As energy efficiency is a key requirement for design and construction of buildings in the future, this project provides well-founded scientific data, which prove the high energy performance of current steel constructions and work out details for further improvements to maintain and extend the position of steel products in the construction sector. KW - steel KW - metal structure KW - building technique KW - energy efficiency KW - thermal insulation KW - industrial research KW - research report Y1 - 2013 SN - 978-92-79-30789-8 U6 - https://doi.org/10.2777/17106 SN - 1831-9424 PB - Publications Office of the European Union CY - Luxembourg ER - TY - RPRT A1 - Lawson, R.M. A1 - Baddoo, N.R. A1 - Vanier, G. A1 - Döring, Bernd A1 - Kuhnhenne, M. A1 - Nieminen, J. A1 - Beguin, P. A1 - Herbin, S. A1 - Caroli, G. A1 - Adetunji, I. A1 - Kozlowski, A. T1 - Renovation of buildings using steel technologies (Robust) - EUR 25335 N2 - Robust addresses the renovation and improvement of existing residential, industrial and commercial buildings using steel-based technologies, focusing on techniques such as over-cladding, over-roofing and roof-top extensions. Steel-intensive renovation techniques currently on the market were reviewed. Performance criteria were developed for over-cladding systems meeting current regulatory standards, with guidelines on how to achieve appropriate levels of air-tightness. KW - iron and steel industry KW - steel KW - materials technology KW - building materials KW - metal structure KW - building safety KW - testing KW - industrial research Y1 - 2013 SN - 978-92-79-24950-1 U6 - https://doi.org/10.2777/97860 SN - 1831-9424 PB - Publications Office of the European Union CY - Luxembourg ER - TY - JOUR A1 - Damm, Marc André A1 - Sauerborn, Markus A1 - Fend, Thomas A1 - Herrmann, Ulf T1 - Optimisation of a urea selective catalytic reduction system with a coated ceramic mixing element JF - Journal of ceramic science and technology Y1 - 2017 SN - 2190-9385 (Print) U6 - https://doi.org/10.4416/JCST2016-00056 SN - 2190-9385 (Online) VL - 8 IS - 1 SP - 19 EP - 24 PB - Göller CY - Baden-Baden ER - TY - JOUR A1 - Honarvarfard, Elham A1 - Gamella, Maria A1 - Channaveerappa, Devika A1 - Darie, Costel C. A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Katz, Evgeny T1 - Electrochemically Stimulated Insulin Release from a Modified Graphene–functionalized Carbon Fiber Electrode JF - Electroanalysis N2 - A graphene-functionalized carbon fiber electrode was modified with adsorbed polyethylenimine to introduce amino functionalities and then with trigonelline and 4-carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized pyridine groups produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer-modified electrode was positive at the neutral pH and negative at pH > 9. Note that 4-carboxyphenylboronic acid was attached to the electrode surface in molar excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH. Negatively charged fluorescent dye-labeled insulin (insulin-FITC) was loaded on the modified electrode surface at pH 7.0 due to its electrostatic attraction to the positively charged interface. The local pH in close vicinity to the electrode surface was increased to ca. 9–10 due to consumption of H+ ions upon electrochemical reduction of oxygen proceeding at the potential of −1.0 V (vs. Ag/AgCl) applied on the modified electrode. The process resulted in recharging of the electrode surface to the negative value due to the formation of the negative charge on the phenylboronic acid groups, thus resulting in the electrostatic repulsion of insulin-FITC and stimulating its release from the electrode surface. The insulin release was characterized by fluorescence spectroscopy (using the FITC-labeled insulin), by electrochemical measurements on an iridium oxide, IrOx, electrode and by mass spectrometry. The graphene-functionalized carbon fiber electrode demonstrated significant advantages in the signal-stimulated insulin release comparing with the carbon fiber electrode without the graphene species. Y1 - 2017 U6 - https://doi.org/10.1002/elan.201700095 SN - 1521-4109 VL - 29 IS - 6 SP - 1543 EP - 1553 PB - Wiley-VCH CY - Weinheim ER -