TY - CHAP A1 - Brüssermann, Klaus A1 - Deuster, M. T1 - Temperature measurement to optimise the burning process N2 - One of the most important parameters in a burning chamber - in power stations, in waste to energy plants - is the temperature. This temperature is in the range of 700-1500 °C - one of the most advanced measuring methods being the acoustic pyrometry with the possibility of producing temperature mapping in one level of the burning chamber - comparable to computer tomography. The results of these measurements discussed in the presentation can be used - to fulfil the legal requirements in the FRG or in the EU - to equalise the temperature in one level of the burning chamber to optimise the steam production (better efficiency of the plant) and to minimise the production of temperature controlled flue gas components (NO, CO a. o.) - to control the SNCR-process if used. KW - Pyrometrie KW - Temperaturmessung KW - temperature measurement KW - acoustic pyrometry KW - steam production KW - flue gas components Y1 - 2005 ER - TY - CHAP A1 - Brüssermann, Klaus T1 - Platform of Excellence in "Energy and Environment" N2 - The Ministry of Science and Research in North Rhine-Westphalia created eight platforms of excellence, one in the research area „Energy and Environment“ in 2002 at ACUAS. This platform concentrates the research and development of 13 professors in Jülich and Aachen and of two scientific institutes with different topics: – NOWUM-Energy with emphasis on efficient and economic energy conversion – The Solar Institute Jülich – SIJ – being the largest research institute in the field of renewables at a University of Applied Sciences in Germany With this platform each possible energy conversion – nuclear, fossil, renewable- can be dealt with to help solving the two most important problems of mankind, energy and potable water. At the CSE are presented the historical development, some research results and the combined master studies in „Energy Systems“ and „Nuclear Applications“ KW - Energietechnik KW - Kernenergie KW - Umwelt KW - Energy KW - environment KW - Energy Systems KW - Nuclear Applications Y1 - 2005 ER - TY - CHAP A1 - Lei, Yu A1 - Mulchandani, Priti A1 - Chen, Wilfred A1 - Mulchandani, Ashok T1 - Biosensor for direct determination of fenitrothion and EPN using recombinant Pseudomonas putida JS444 with surface expressed organophosphorus hydrolase. 1. modified clark oxygen electrode N2 - This paper reports a first microbial biosensor for rapid and cost-effective determination of organophosphorus pesticides fenitrothion and EPN. The biosensor consisted of recombinant PNP-degrading/oxidizing bacteria Pseudomonas putida JS444 anchoring and displaying organophosphorus hydrolase (OPH) on its cell surface as biological sensing element and a dissolved oxygen electrode as the transducer. Surfaceexpressed OPH catalyzed the hydrolysis of fenitrothion and EPN to release 3-methyl-4-nitrophenol and p-nitrophenol, respectively, which were oxidized by the enzymatic machinery of Pseudomonas putida JS444 to carbon dioxide while consuming oxygen, which was measured and correlated to the concentration of organophosphates. Under the optimum operating conditions, the biosensor was able to measure as low as 277 ppb of fenitrothion and 1.6 ppm of EPN without interference from phenolic compounds and other commonly used pesticides such as carbamate pesticides, triazine herbicides and organophosphate pesticides without nitrophenyl substituent. The applicability of the biosensor to lake water was also demonstrated. KW - Biosensor KW - Organophosphorus KW - fenitrothion KW - EPN KW - biosensor KW - Pseudomonas putida Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1573 ER - TY - CHAP A1 - Baronas, Romas A1 - Ivanauskas, Feliksas A1 - Kulys, Juozas T1 - Mathematical modeling of biosensors based on an array of enzyme microreactors N2 - This paper presents a two-dimensional-in-space mathematical model of biosensors based on an array of enzyme microreactors immobilised on a single electrode. The modeling system acts under amperometric conditions. The microreactors were modeled by particles and by strips. The model is based on the diffusion equations containing a nonlinear term related to the Michaelis-Menten kinetics of the enzymatic reaction. The model involves three regions: an array of enzyme microreactors where enzyme reaction as well as mass transport by diffusion takes place, a diffusion limiting region where only the diffusion takes place, and a convective region, where the analyte concentration is maintained constant. Using computer simulation, the influence of the geometry of the microreactors and of the diffusion region on the biosensor response was investigated. The digital simulation was carried out using the finite difference technique. KW - Biosensor KW - Reaction-diffusion KW - modeling biosensor KW - microreactor Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1569 ER - TY - CHAP A1 - Barek, Jiri A1 - Fischer, Jan A1 - Navratil, Tomas A1 - Peckova, Karolina A1 - Yosypchuk, Bogdan T1 - Silver solid amalgam electrodes as sensors for chemical carcinogens N2 - The applicability of differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV) at a non-toxic meniscus-modified silver solid amalgam electrode (m-AgSAE) for the determination of trace amounts of genotoxic substances was demonstrated on the determination of micromolar and submicromolar concentrations of 3-nitrofluoranthene using methanol - 0.01 mol L-1 NaOH (9:1) mixture as a base electrolyte and of Ostazine Orange using 0.01 mol L-1 NaOH as a base electrolyte. KW - Biosensor KW - Solid amalgam electrodes KW - voltammetry KW - carcinogens KW - 3-nitrofluoranthene KW - Ostazine Orange Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1554 ER - TY - CHAP A1 - Arida, Hassan A. A1 - Kloock, Joachim P. A1 - Schöning, Michael Josef T1 - Novel organic membrane-based thin-film microsensors for the determination of heavy metal cations N2 - A first step towards the fabrication and electrochemical evaluation of thin-film microsensors based on organic PVC membranes for the determination of Hg(II), Cd(II), Pb(II) and Cu(II) ions in solutions has been realised. The membrane-coating mixture used in the preparation of this new type of microsensors is incorporating PVC as supporting matrix, o-nitrophenyloctylether (o-NPOE) as solvent mediator and a recently synthesized Hg[dimethylglyoxime(phene)]2+ and Bis-(4-hydroxyacetophenone)-ethylenediamine as electroactive materials for Hg(II) and Cd(II), respectively. A set of three commercialised ionophores for Cd(II), Pb(II) and Cu(II) has been also used for comparison. Thin-film microsensors based on these membranes showed a Nernstian response of slope (26-30 mV/dec.) for the respective tested cations. The potentiometric response characteristics (linear range, pH range, detection limit and response time) are comparable with those obtained by conventional membranes as well as coated wire electrodes prepared from the same membrane. The realisation of the new organic membrane-based thin-film microsensors overcomes the problem of an insufficient selectivity of solid-state-based thinfilm sensors. KW - Biosensor KW - Heavy metal detection KW - thin-film microsensors KW - organic PVC membranes Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1545 ER - TY - CHAP A1 - Pijanowska, Dorota G. A1 - Remiszewska, Elzbieta T1 - pH-based detection of phenylalnine by potentiometric and colorimetric methods N2 - In this paper, methods of sample preparation for potentiometric measurement of phenylalanine are presented. Basing on the spectrophotometric measurements of phenylalanine, the concentrations of reagents of the enzymatic reaction (10 mM L-Phe, 0,4 mM NAD+, 2U L-PheDH) were determined. Then, the absorption spectrum of the reaction product, NADH, was monitored (maximum peak at 340 nm). The results obtained by the spectrophotometric method were compared with the results obtained by the colourimetry, using pH indicators. The above-mentioned two methods will be used as references for potentiometric measurements of phenylalanine concentration. KW - Biosensor KW - Phenylalanine determination KW - enzymatic methods KW - pH-based biosensing Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1536 ER - TY - CHAP A1 - Katz, Eugenii A1 - Willner, Itamar T1 - Magneto-controlled quantized electron transfer to surface-confined redox units and metal nanoparticles N2 - Hydrophobic magnetic nanoparticles (NPs) consisting of undecanoate-capped magnetite (Fe3O4, average diameter ca. 5 nm) are used to control quantized electron transfer to surface-confined redox units and metal NPs. A two-phase system consisting of an aqueous electrolyte solution and a toluene phase that includes the suspended undecanoatecapped magnetic NPs is used to control the interfacial properties of the electrode surface. The attracted magnetic NPs form a hydrophobic layer on the electrode surface resulting in the change of the mechanisms of the surface-confined electrochemical processes. A quinone-monolayer modified Au electrode demonstrates an aqueous-type of the electrochemical process (2e-+2H+ redox mechanism) for the quinone units in the absence of the hydrophobic magnetic NPs, while the attraction of the magnetic NPs to the surface results in the stepwise single-electron transfer mechanism characteristic of a dry nonaqueous medium. Also, the attraction of the hydrophobic magnetic NPs to the Au electrode surface modified with Au NPs (ca. 1.4 nm) yields a microenvironment with a low dielectric constant that results in the single-electron quantum charging of the Au NPs. KW - Biosensor KW - Nanoparticles KW - magnetic particles KW - quantum charging KW - modified electrode Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1528 ER - TY - CHAP A1 - Spannhake, Jan A1 - Schulz, Olaf A1 - Helwig, Andreas A1 - Krenkow, Angelika A1 - Müller, Gerhard A1 - Doll, Theodor T1 - High-temperature MEMS heater platforms: long-term performance of metal and semiconductor heater materials N2 - Micromachined thermal heater platforms offer low electrical power consumption and high modulation speed, i.e. properties which are advantageous for realizing nondispersive infrared (NDIR) gas- and liquid monitoring systems. In this paper, we report on investigations on silicon-on-insulator (SOI) based infrared (IR) emitter devices heated by employing different kinds of metallic and semiconductor heater materials. Our results clearly reveal the superior high-temperature performance of semiconductor over metallic heater materials. Long-term stable emitter operation in the vicinity of 1300 K could be attained using heavily antimony-doped tin dioxide (SnO2:Sb) heater elements. KW - Biosensor KW - Hotplate KW - heater metallisation KW - high-temperature stability KW - electro-migration KW - doped silicon KW - doped metal oxide KW - antimony doped tin oxide Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1513 ER - TY - CHAP A1 - Tymecki, Lukasz A1 - Glab, Stanislaw A1 - Koncki, Robert T1 - Miniaturized, planar ion-selective electrodes fabricated by means of thick-film technology N2 - Various planar technologies are employed for developing solid-state sensors having low cost, small size and high reproducibility; thin- and thick-film technologies are most suitable for such productions. Screen-printing is especially suitable due to its simplicity, low-cost, high reproducibility and efficiency in large-scale production. This technology enables the deposition of a thick layer and allows precise pattern control. Moreover, this is a highly economic technology, saving large amounts of the used inks. In the course of repetitions of the film-deposition procedure there is no waste of material due to additivity of this thick-film technology. Finally, the thick films can be easily and quickly deposited on inexpensive substrates. In this contribution, thick-film ion-selective electrodes based on ionophores as well as crystalline ion-selective materials dedicated for potentiometric measurements are demonstrated. Analytical parameters of these sensors are comparable with those reported for conventional potentiometric electrodes. All mentioned thick-film strip electrodes have been totally fabricated in only one, fully automated thickfilm technology, without any additional manual, chemical or electrochemical steps. In all cases simple, inexpensive, commercially available materials, i.e. flexible, plastic substrates and easily cured polymer-based pastes were used. KW - Biosensor KW - Potentiometry KW - thick-film technology KW - screen-printing KW - ion-selective electrodes Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1506 ER -