TY - JOUR A1 - Ayed, Anis Haj A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Keinz, Jan T1 - CFD Based Improvement of the DLN Hydrogen Micromix Combustion Technology at Increased Energy Densities JF - American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) N2 - Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel within future low emission power generation. Due to the large difference in the physical properties of Hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. Thus, the development of DLN combustion technologies is an essential and challenging task for the future of Hydrogen fuelled gas turbines. The DLN Micromix combustion principle for hydrogen fuel has been developed to significantly reduce NOx-emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized diffusion-type flames. The major advantages of this combustion principle are the inherent safety against flash-back and the low NOx-emissions due to a very short residence time of reactants in the flame region of the micro-flames. The Micromix Combustion technology has been already proven experimentally and numerically for pure Hydrogen fuel operation at different energy density levels. The aim of the present study is to analyze the influence of different geometry parameter variations on the flame structure and the NOx emission and to identify the most relevant design parameters, aiming to provide a physical understanding of the Micromix flame sensitivity to the burner design and identify further optimization potential of this innovative combustion technology while increasing its energy density and making it mature enough for real gas turbine application. The study reveals great optimization potential of the Micromix Combustion technology with respect to the DLN characteristics and gives insight into the impact of geometry modifications on flame structure and NOx emission. This allows to further increase the energy density of the Micromix burners and to integrate this technology in industrial gas turbines. Y1 - 2016 SN - 2313-4402 VL - 26 IS - 3 SP - 290 EP - 303 PB - GSSRR ER - TY - JOUR A1 - Ayed, Anis Haj A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Keinz, Jan A1 - Bohn, D. T1 - CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities JF - Propulsion and Power Research KW - Micromix combustion KW - Hydrogen gas turbine KW - Hydrogen combustion KW - High hydrogen combustion KW - Dry-low-NOx (DLN) combustion Y1 - 2017 SN - 2212-540X U6 - http://dx.doi.org/10.1016/j.jppr.2017.01.005 VL - 6 IS - 1 SP - 15 EP - 24 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Ayed, Anis Haj A1 - Striegan, Constantin J. D. A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Kazari, M. A1 - Horikawa, Atsushi A1 - Okada, Kunio T1 - Automated design space exploration of the hydrogen fueled "Micromix" combustor technology N2 - Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested “DLN Micromix” combustion technology offers a great potential to burn hydrogen in gas turbines at very low NOx emissions. Aiming to further develop an existing burner design in terms of increased energy density, a redesign is required in order to stabilise the flames at higher mass flows and to maintain low emission levels. For this purpose, a systematic design exploration has been carried out with the support of CFD and optimisation tools to identify the interactions of geometrical and design parameters on the combustor performance. Aerodynamic effects as well as flame and emission formation are observed and understood time- and cost-efficiently. Correlations between single geometric values, the pressure drop of the burner and NOx production have been identified as a result. This numeric methodology helps to reduce the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field. Y1 - 2017 N1 - Proceedings of the 1st Global Power and Propulsion Forum GPPF 2017, Jan 16-18, 2017, Zurich, Switzerland SP - 1 EP - 8 ER - TY - JOUR A1 - Bohn, D. A1 - Funke, Harald A1 - Gier, J. T1 - Temperature jet development in a cross-over channel JF - Third European Conference on Turbomachinery - fluid dynamics and thermodynamics : : 2 - 5 March 1999, Royal National Hotel, London, UK / organized by the Energy Transfer and Thermofluid Mechanics Group of the Institution of Mechanical Engineers (IMechE); with support and sponsorship from European Commission / Vol. B. Y1 - 1999 N1 - C557/158/99 ; IMechE conference transactions 1999-1B SP - 671 EP - 680 PB - Professional Engineering Publ. CY - Bury St. Edmunds ER - TY - JOUR A1 - Bohn, D. A1 - Funke, Harald A1 - Gier, J. T1 - Numerical and Experimental Investigations on the Flow in a 4-Stage Turbine with Special Focus on the Development of a Radial Temperature Streak JF - ASME Turbo Expo 1999, Indianapolis, USA, 1999 Y1 - 1999 N1 - ASME-Paper 99-GT-027 ER - TY - JOUR A1 - Bohn, Dieter A1 - Funke, Harald T1 - Experimental investigations into the nonuniform flow in a 4-stage turbine with special focus on the flow equalization in the first turbine stage JF - ASME TURBO EXPO, Proceedings of the ASME Turbo Expo, 2003 Y1 - 2003 SN - 0-7918-3689-4 N1 - ASME TURBO EXPO 2003, Proceedings, Vol. 6: Turbomachinery, Pt. A, Atlanta, US, Jun 16-19, 2003 SP - 281 EP - 289 ER - TY - RPRT A1 - Bohn, Dieter A1 - Funke, Harald A1 - Gier, J. T1 - Untersuchung des Strömungsausgleichs in den Schaufelreihen ungleichförmig ungeströmter Turbomaschinen N2 - Zwischenbericht über das Vorhaben FVV - Nr. 665 (AIF-Nr. 10780) Heft R 498(1998) S. 123-136. Informationstagung Turbinen, Frühjahr 1998, Frankfurt KW - Strömungsmaschine KW - Turbine KW - Strömungsausgleich KW - Turbine Y1 - 1998 ER - TY - RPRT A1 - Bohn, Dieter A1 - Funke, Harald A1 - Gier, J. A1 - Heuer, T. T1 - Untersuchung des Strömungsausgleichs in den Schaufelreihen ungleichförmig ungeströmter Turbomaschinen N2 - Abschlussbericht über das Vorhaben FVV-Nr. 665 (AIF-Nr. 10780). Laufzeit 01.08.1996 bis 31.10.1999. Heft R 504 (1999). S. 99-124. Informationstagung Turbinen, Herbst 1999, Heidelberg. KW - Strömungsmaschine KW - Turbine KW - Strömungsausgleich KW - Turbine Y1 - 1999 ER - TY - RPRT A1 - Bohn, Dieter A1 - Funke, Harald A1 - Heuer, T. T1 - Sonden-Schaufel-Interaktion bei stationären Messungen mit pneumatischen Strömungssonden in engen Axialspalten N2 - Abschlussbereicht über das Anschlussvorhaben zu FVV-Nr. 665 (AIF-Nr. 10780). Heft R 511 (2001). 23 S. Informationstagung Turbinen, Frühjahr 2001, Frankfurt. KW - Strömungsmaschine KW - Turbine KW - Strömungsausgleich KW - Turbine KW - Strömungssonde Y1 - 2001 ER - TY - JOUR A1 - Bohn, Dieter A1 - Funke, Harald A1 - Heuer, Tom A1 - Bütikofer, J. T1 - Numerical and experimental investigations of the influence of different swirl-ratios on the temperature streak equalization in a 4-stage turbine JF - ASME Turbo Expo 2000 ; Munich, May 8-11 2000 Y1 - 2000 N1 - ASME-paper ; 2000-GT-250 CY - Munich ER -