TY - JOUR A1 - Booysen, Tracy A1 - Rieger, Michael A1 - Ferrein, Alexander T1 - Towards inexpensive robots for science & technology teaching and education in Africa Y1 - 2011 SN - 978-1-61284-992-8 N1 - AFRICON, 2011 SP - 1 EP - 6 PB - IEEE CY - New York ER - TY - CHAP A1 - Chajan, Eduard A1 - Schulte-Tigges, Joschua A1 - Reke, Michael A1 - Ferrein, Alexander A1 - Matheis, Dominik A1 - Walter, Thomas T1 - GPU based model-predictive path control for self-driving vehicles T2 - IEEE Intelligent Vehicles Symposium (IV) N2 - One central challenge for self-driving cars is a proper path-planning. Once a trajectory has been found, the next challenge is to accurately and safely follow the precalculated path. The model-predictive controller (MPC) is a common approach for the lateral control of autonomous vehicles. The MPC uses a vehicle dynamics model to predict the future states of the vehicle for a given prediction horizon. However, in order to achieve real-time path control, the computational load is usually large, which leads to short prediction horizons. To deal with the computational load, the control algorithm can be parallelized on the graphics processing unit (GPU). In contrast to the widely used stochastic methods, in this paper we propose a deterministic approach based on grid search. Our approach focuses on systematically discovering the search area with different levels of granularity. To achieve this, we split the optimization algorithm into multiple iterations. The best sequence of each iteration is then used as an initial solution to the next iteration. The granularity increases, resulting in smooth and predictable steering angle sequences. We present a novel GPU-based algorithm and show its accuracy and realtime abilities with a number of real-world experiments. KW - Heuristic algorithms KW - Computational modeling KW - model-predictive control KW - GPU KW - autonomous driving Y1 - 2021 SN - 978-1-7281-5394-0 U6 - http://dx.doi.org/10.1109/IV48863.2021.9575619 N1 - 2021 IEEE Intelligent Vehicles Symposium (IV) July 11-17, 2021. Nagoya, Japan SP - 1243 EP - 1248 PB - IEEE ER - TY - JOUR A1 - Claer, Mario A1 - Ferrein, Alexander A1 - Schiffer, Stefan T1 - Calibration of a Rotating or Revolving Platform with a LiDAR Sensor JF - Applied Sciences Y1 - 2019 U6 - http://dx.doi.org/10.3390/app9112238 SN - 2076-3417 VL - Volume 9 IS - issue 11, 2238 PB - MDPI CY - Basel ER - TY - CHAP A1 - Dey, Thomas A1 - Elsen, Ingo A1 - Ferrein, Alexander A1 - Frauenrath, Tobias A1 - Reke, Michael A1 - Schiffer, Stefan ED - Makedon, Fillia T1 - CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom T2 - PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference N2 - In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway. KW - embedded hardware KW - sensor networks KW - information systems KW - education KW - do-it-yourself Y1 - 2021 SN - 9781450387927 U6 - http://dx.doi.org/10.1145/3453892.3462697 N1 - PETRA '21: The 14th PErvasive Technologies Related to Assistive Environments Conference Corfu Greece 29 June 2021- 2 July 2021 SP - 292 EP - 299 PB - Association for Computing Machinery CY - New York ER - TY - CHAP A1 - Donner, Ralf A1 - Rabel, Matthias A1 - Scholl, Ingrid A1 - Ferrein, Alexander A1 - Donner, Marc A1 - Geier, Andreas A1 - John, André A1 - Köhler, Christian A1 - Varga, Sebastian T1 - Die Extraktion bergbaulich relevanter Merkmale aus 3D-Punktwolken eines untertagetauglichen mobilen Multisensorsystems T2 - Tagungsband Geomonitoring Y1 - 2019 U6 - http://dx.doi.org/10.15488/4515 SP - 91 EP - 110 ER - TY - CHAP A1 - Dylla, Frank A1 - Ferrein, Alexander A1 - Lakemeyer, Gerhard T1 - AllemaniACs 2003 team description T2 - RoboCup 2003 : Robot Soccer World Cup VII Y1 - 2003 SP - 1 EP - 3 ER - TY - CHAP A1 - Eichenbaum, Julian A1 - Nikolovski, Gjorgji A1 - Mülhens, Leon A1 - Reke, Michael A1 - Ferrein, Alexander A1 - Scholl, Ingrid T1 - Towards a lifelong mapping approach using Lanelet 2 for autonomous open-pit mine operations T2 - 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE) N2 - Autonomous agents require rich environment models for fulfilling their missions. High-definition maps are a well-established map format which allows for representing semantic information besides the usual geometric information of the environment. These are, for instance, road shapes, road markings, traffic signs or barriers. The geometric resolution of HD maps can be as precise as of centimetre level. In this paper, we report on our approach of using HD maps as a map representation for autonomous load-haul-dump vehicles in open-pit mining operations. As the mine undergoes constant change, we also need to constantly update the map. Therefore, we follow a lifelong mapping approach for updating the HD maps based on camera-based object detection and GPS data. We show our mapping algorithm based on the Lanelet 2 map format and show our integration with the navigation stack of the Robot Operating System. We present experimental results on our lifelong mapping approach from a real open-pit mine. Y1 - 2023 SN - 979-8-3503-2069-5 (Online) SN - 979-8-3503-2070-1 (Print) U6 - http://dx.doi.org/10.1109/CASE56687.2023.10260526 N1 - 19th International Conference on Automation Science and Engineering (CASE), 26-30 August 2023, Auckland, New Zealand. PB - IEEE ER - TY - CHAP A1 - Eltester, Niklas Sebastian A1 - Ferrein, Alexander A1 - Schiffer, Stefan T1 - A smart factory setup based on the RoboCup logistics league T2 - 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS) N2 - In this paper we present SMART-FACTORY, a setup for a research and teaching facility in industrial robotics that is based on the RoboCup Logistics League. It is driven by the need for developing and applying solutions for digital production. Digitization receives constantly increasing attention in many areas, especially in industry. The common theme is to make things smart by using intelligent computer technology. Especially in the last decade there have been many attempts to improve existing processes in factories, for example, in production logistics, also with deploying cyber-physical systems. An initiative that explores challenges and opportunities for robots in such a setting is the RoboCup Logistics League. Since its foundation in 2012 it is an international effort for research and education in an intra-warehouse logistics scenario. During seven years of competition a lot of knowledge and experience regarding autonomous robots was gained. This knowledge and experience shall provide the basis for further research in challenges of future production. The focus of our SMART-FACTORY is to create a stimulating environment for research on logistics robotics, for teaching activities in computer science and electrical engineering programmes as well as for industrial users to study and explore the feasibility of future technologies. Building on a very successful history in the RoboCup Logistics League we aim to provide stakeholders with a dedicated facility oriented at their individual needs. Y1 - 2020 U6 - http://dx.doi.org/10.1109/ICPS48405.2020.9274766 N1 - 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS), 10-12 June 2020, Tampere, Finland. SP - 297 EP - 302 PB - IEEE ER - TY - BOOK A1 - Ferrein, Alexander T1 - Robot controllers for highly dynamic environments with real-time constraints Y1 - 2008 N1 - Aachen, Techn. Hochsch., Diss., 2007 ER - TY - JOUR A1 - Ferrein, Alexander T1 - Logic-based robot control in highly dynamic domains / Ferrein, Alexander ; Lakemeyer, Gerhard JF - Robotics and Autonomous Systems. 56 (2008), H. 11 Y1 - 2008 SN - 0921-8890 SP - 980 EP - 991 ER -