TY - JOUR A1 - Tippkötter, Nils A1 - Wollny, Steffen A1 - Suck, Kirstin A1 - Sohling, Ulrich A1 - Ruf, Friedrich A1 - Ulber, Roland T1 - Recycling of spent oil bleaching earth as source of glycerol for the anaerobic production of acetone, butanol, and ethanol with Clostridium diolis and lipolytic Clostridium lundense JF - Engineering in Life Sciences N2 - A major part of edible oil is subjected to bleaching procedures, primarily with minerals applied as adsorbers. Their recycling is currently done either by regaining the oil via organic solvent extraction or by using the spent bleaching earth (SBE) as additive for animal feed, etc. As a new method, the reutilization of the by-product SBE for the microbiologic formation of acetone, butanol, and ethanol (ABE) is presented as proof-of-concept. The SBE was taken from a palm oil cleaning process. The recycling concept is based on the application of lipolytic clostridia strains. Due to considerably long fermentation times, co-fermentation with Candida rugosa and enzymatic hydrolyses of the bound oil with a subsequent clostridia fermentation are shown as alternative routes. Anaerobic fermentations under comparison of different clostridia strains were performed with glycerol media, enzymatically hydrolyzed palm oil and SBE. Solutes, side product compositions and productivities were quantified via HPLC. A successful production of ABE solutes from SBE has been done with a yield of 0.15 g butanol per gram of bound glycerol. Thus, the biotechnological recycling of the waste stream is possible in principle. Inhibition of the substrate suspension has been observed. A chromatographic ion-exchange of substrates increased the biomass concentration. Y1 - 2014 U6 - http://dx.doi.org/10.1002/elsc.201300113 SN - 1618-2863 VL - 14 IS - 4 SP - 425 EP - 432 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wang, Ren-Qi A1 - Druckenmüller, Katharina A1 - Elbers, Gereon A1 - Guenther, Klaus A1 - Croué, Jean-Philippe T1 - Analysis of aquatic-phase natural organic matter by optimized LDI-MS method JF - Journal of mass spectrometry N2 - The composition and physiochemical properties of aquatic-phase natural organic matter (NOM) are most important problems for both environmental studies and water industry. Laser desorption/ionization (LDI) mass spectrometry facilitated successful examinations of NOM, as humic and fulvic acids in NOM are readily ionized by the nitrogen laser. In this study, hydrophobic NOMs (HPO NOMs) from river, reservoir and waste water were characterized by this technique. The effect of analytical variables like concentration, solvent composition and laser energy was investigated. The exact masses of small molecular NOM moieties in the range of 200–1200 m/z were determined in reflectron mode. In addition, spectra of post-source-decay experiments in this range showed that some compounds from different natural NOMs had the same fragmental ions. In the large mass range of 1200–15 000 Da, macromolecules and their aggregates were found in HPO NOMs from natural waters. Highly humic HPO exhibited mass peaks larger than 8000 Da. On the other hand, the waste water and reservoir water mainly had relatively smaller molecules of about 2000 Da. The LDI-MS measurements indicated that highly humic river waters were able to form large aggregates and membrane foulants, while the HPO NOMs from waste water and reservoir water were unlikely to form large aggregates. Copyright © 2014 John Wiley & Sons, Ltd. Y1 - 2014 U6 - http://dx.doi.org/10.1002/jms.3321 SN - 1096-9888 VL - 49 IS - 2 SP - 154 EP - 160 PB - Wiley CY - Bognor Regis ER - TY - JOUR A1 - Whitehead, Mark A1 - Öhlschläger, Peter A1 - Almajhdi, Fahad N. A1 - Alloza, Leonor A1 - Marzábal, Pablo A1 - Meyers, Ann E. A1 - Hitzeroth, Inga I. A1 - Rybicki, Edward P. T1 - Human papillomavirus (HPV) type 16 E7 protein bodies cause tumour regression in mice JF - BMC cancer Y1 - 2014 U6 - http://dx.doi.org/10.1186/1471-2407-14-367 SN - 1471-2407 IS - 14:367 SP - 1 EP - 15 PB - BioMed Central CY - London ER - TY - JOUR A1 - Wiesen, Sebastian A1 - Tippkötter, Nils A1 - Muffler, Kai A1 - Suck, Kirstin A1 - Sohling, Ulrich A1 - Ruf, Nils A1 - Ulber, Roland T1 - Adsorptive Vorbehandlung von Rohglycerin für die 1,3-Propandiol Fermentation mit Clostridium diolis JF - Chemie Ingenieur Technik N2 - Bei der Gewinnung von Fettsäuren aus Pflanzenölen, z. B. zur Herstellung von Biopolymeren, oder bei der Biodiesel- und Seifenproduktion, fällt Glycerin als Nebenprodukt an. Bei der Biokonversion dieses Rohstoffes zu 1,3-Propandiol wird der Produktionsorganismus Clostridium diolis durch Verunreinigungen im Rohglycerin gehemmt. Als inhibierende Substanzen konnten freie Fettsäuren identifiziert werden. Mithilfe eines adsorptiven Aufarbeitungsverfahrens ist es gelungen, die Fettsäuren zu entfernen und die Konversionseffizienz zu 1,3-Propandiol zu erhöhen. Y1 - 2014 U6 - http://dx.doi.org/10.1002/cite.201300080 N1 - Englischer Titel: Adsorptive Pretreatment of Crude Glycerol Prior to Fermentation to 1,3-Propanediole by Clostridium Diolis VL - 86 IS - 1-2 SP - 129 EP - 135 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Winckler, Silvia A1 - Krueger, Rolf A1 - Schnitzler, Thomas A1 - Zang, Werner A1 - Fischer, Rainer A1 - Biselli, Manfred T1 - A sensitive monitoring system for mammalian cell cultivation processes: a PAT approach JF - Bioprocess and biosystems engineering N2 - Biopharmaceuticals such as antibodies are produced in cultivated mammalian cells, which must be monitored to comply with good manufacturing practice. We, therefore, developed a fully automated system comprising a specific exhaust gas analyzer, inline analytics and a corresponding algorithm to precisely determine the oxygen uptake rate, carbon dioxide evolution rate, carbon dioxide transfer rate, transfer quotient and respiratory quotient without interrupting the ongoing cultivation, in order to assess its reproducibility. The system was verified using chemical simulation experiments and was able to measure the respiratory activity of hybridoma cells and DG44 cells (derived from Chinese hamster ovary cells) with satisfactory results at a minimum viable cell density of ~2.0 × 10⁵ cells ml⁻¹. The system was suitable for both batch and fed-batch cultivations in bubble-aerated and membrane-aerated reactors, with and without the control of pH and dissolved oxygen. Y1 - 2014 U6 - http://dx.doi.org/10.1007/s00449-013-1062-8 SN - 1615-7591 (Print) 1615-7605 (Online) VL - 37 IS - 5 SP - 901 EP - 912 PB - Springer CY - Berlin, Heidelberg ER -