TY - JOUR A1 - Weber, Tobias A1 - Ruff-Stahl, Hans-Joachim K. T1 - Advances in Composite Manufacturing of Helicopter Parts JF - International Journal of Aviation, Aeronautics, and Aerospace Y1 - 2017 U6 - http://dx.doi.org/10.15394/ijaaa.2017.1153 SN - 2374-6793 VL - 4 IS - 1 ER - TY - JOUR A1 - Weber, Tobias A1 - Englhard, Markus A1 - Arent, Jan-Christoph A1 - Hausmann, Joachim T1 - An experimental characterization of wrinkling generated during prepreg autoclave manufacturing using caul plates JF - Journal of Composite Materials Y1 - 2019 U6 - http://dx.doi.org/10.1177/0021998319846556 SN - 1530-793X VL - 53 IS - 26-27 SP - 3757 EP - 3773 ER - TY - JOUR A1 - Weber, Tobias A1 - Arent, Jan-Christoph A1 - Steffen, Lucas A1 - Balvers, Johannes M. A1 - Duhovic, Miro T1 - Thermal optimization of composite autoclave molds using the shift factor approach for boundary condition estimation JF - Journal of Composite Materials Y1 - 2017 U6 - http://dx.doi.org/10.1177/0021998317699868 SN - 1530-793X VL - 51 IS - 12 SP - 1753 EP - 1767 PB - Sage CY - London ER - TY - JOUR A1 - Weber, Tobias A1 - Arent, Jan-Christoph A1 - Münch, Lukas A1 - Duhovic, Miro A1 - Balvers, Johannes M. T1 - A fast method for the generation of boundary conditions for thermal autoclave simulation JF - Composites Part A N2 - Manufacturing process simulation enables the evaluation and improvement of autoclave mold concepts early in the design phase. To achieve a high part quality at low cycle times, the thermal behavior of the autoclave mold can be investigated by means of simulations. Most challenging for such a simulation is the generation of necessary boundary conditions. Heat-up and temperature distribution in an autoclave mold are governed by flow phenomena, tooling material and shape, position within the autoclave, and the chosen autoclave cycle. This paper identifies and summarizes the most important factors influencing mold heat-up and how they can be introduced into a thermal simulation. Thermal measurements are used to quantify the impact of the various parameters. Finally, the gained knowledge is applied to develop a semi-empirical approach for boundary condition estimation that enables a simple and fast thermal simulation of the autoclave curing process with reasonably high accuracy for tooling optimization. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.compositesa.2016.05.036 SN - 1359-835X VL - 88 SP - 216 EP - 225 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wahle, Michael A1 - Weber, M. T1 - Simulationsmodell zur Darstellung der Eigenschaften von Fahrzeug-Stoßdämpfern bei beliebiger dynamischer Belastung, Simulationsmodell für Stoßdämpfer Y1 - 2002 N1 - Report: bmb+f. Bundesministerium für Bildung und Forschung, Forschungsberichte (2002) Seite 1-76 (76 Seiten, Bilder, 21 Quellen), Report-Nr. 17.036.99 ER - TY - JOUR A1 - Wahle, Michael A1 - Weber, M. T1 - Zum Stand von Komponentenmodellen im Rahmen der Fahrzeugsimulation Y1 - 2001 N1 - Konferenz-Einzelbericht: Fahrwerk-Tech Tagung, München, 8. - 9. März 2001, Paper-Nr. 15, Seite 1-22 ER - TY - JOUR A1 - Wahle, Michael T1 - Auf sicheren Füßen stehen : Entwicklung eines Maschinenlagers mit einem Federkern aus zelligem Polyurethan JF - Der Konstrukteur Y1 - 2000 SN - 0344-4570 VL - 31 IS - 6 SP - 30 EP - 32 ER - TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Carsten A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation JF - International Journal of Production Research N2 - Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers’ cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines. KW - Human factors KW - assistance system KW - gamification KW - adaptive systems KW - manufacturing Y1 - 2023 U6 - http://dx.doi.org/10.1080/00207543.2023.2166140 SN - 0020-7543 (Print) SN - 1366-588X (Online) PB - Taylor & Francis ER - TY - JOUR A1 - Trilla, Joan A1 - Grossen, Jürgen A1 - Robinson, Alexander A1 - Funke, Harald A1 - Bosschaerts, Walter A1 - Hendrick, Patrick T1 - Development of a hydrogen combustion chamber for an ultra micro gas turbine JF - PowerMEMS 2008, 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, microEMS 2008, 2nd Symposium on Micro Environmental Machine Systems, Sendai, JP, Nov 9-12, 2008 Y1 - 2008 SP - 101 EP - 104 ER - TY - JOUR A1 - Thomessen, Karolin A1 - Thoma, Andreas A1 - Braun, Carsten T1 - Bio-inspired altitude changing extension to the 3DVFH* local obstacle avoidance algorithm JF - CEAS Aeronautical Journal N2 - Obstacle avoidance is critical for unmanned aerial vehicles (UAVs) operating autonomously. Obstacle avoidance algorithms either rely on global environment data or local sensor data. Local path planners react to unforeseen objects and plan purely on local sensor information. Similarly, animals need to find feasible paths based on local information about their surroundings. Therefore, their behavior is a valuable source of inspiration for path planning. Bumblebees tend to fly vertically over far-away obstacles and horizontally around close ones, implying two zones for different flight strategies depending on the distance to obstacles. This work enhances the local path planner 3DVFH* with this bio-inspired strategy. The algorithm alters the goal-driven function of the 3DVFH* to climb-preferring if obstacles are far away. Prior experiments with bumblebees led to two definitions of flight zone limits depending on the distance to obstacles, leading to two algorithm variants. Both variants reduce the probability of not reaching the goal of a 3DVFH* implementation in Matlab/Simulink. The best variant, 3DVFH*b-b, reduces this probability from 70.7 to 18.6% in city-like worlds using a strong vertical evasion strategy. Energy consumption is higher, and flight paths are longer compared to the algorithm version with pronounced horizontal evasion tendency. A parameter study analyzes the effect of different weighting factors in the cost function. The best parameter combination shows a failure probability of 6.9% in city-like worlds and reduces energy consumption by 28%. Our findings demonstrate the potential of bio-inspired approaches for improving the performance of local path planning algorithms for UAV. KW - UAV KW - Obstacle avoidance KW - Autonomy KW - Local path planning Y1 - 2023 U6 - http://dx.doi.org/10.1007/s13272-023-00691-w SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Karolin Thomessen PB - Springer CY - Wien ER -