TY - CHAP A1 - Wolf, C. Roland A1 - Kapelyukh, Yury A1 - Scheer, Nico A1 - Henderson, Colin J. ED - Wilson, Alan G. E. T1 - Application of Humanised and Other Transgenic Models to Predict Human Responses to Drugs N2 - The use of transgenic animal models has transformed our knowledge of complex biochemical pathways in vivo. It has allowed disease processes to be modelled and used in the development of new disease prevention and treatment strategies. They can also be used to define cell- and tissue-specific pathways of gene regulation. A further major application is in the area of preclinical development where such models can be used to define pathways of chemical toxicity, and the pathways that regulate drug disposition. One major application of this approach is the humanisation of mice for the proteins that control drug metabolism and disposition. Such models can have numerous applications in the development of drugs and in their more sophisticated use in the clinic. Y1 - 2015 SN - 978-1-78262-778-4 U6 - http://dx.doi.org/10.1039/9781782622376-00152 SP - 152 EP - 176 PB - RSC Publ. CY - Cambridge ER - TY - JOUR A1 - Stanley, Lesley A. A1 - Horsburgh, Brian C. A1 - Ross, Jillian A1 - Scheer, Nico A1 - Wolf, C. Roland T1 - Drug transporters: Gatekeepers controlling access of xenobiotics to the cellular interior JF - Drug Metabolism Reviews Y1 - 2009 U6 - http://dx.doi.org/10.1080/03602530802605040 SN - 1097-9883 VL - 41 IS - 1 SP - 27 EP - 65 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Stanley, Lesley A. A1 - Horsburgh, Brian C. A1 - Ross, Jillian A1 - Scheer, Nico A1 - Wolf, C. Roland T1 - Nuclear Receptors which play a pivotal role in drug disposition and chemical toxicity JF - Drug Metabolism Reviews Y1 - 2006 U6 - http://dx.doi.org/10.1080/03602530600786232 SN - 1097-9883 VL - 38 IS - 3 SP - 515 EP - 597 ER - TY - JOUR A1 - Scheer, Nico A1 - Wolf, C. Roland T1 - Genetically humanized mouse models of drug metabolizing enzymes and transporters and their applications JF - Xenobiotica N2 - 1. Drug metabolizing enzymes and transporters play important roles in the absorption, metabolism, tissue distribution and excretion of various compounds and their metabolites and thus can significantly affect their efficacy and safety. Furthermore, they can be involved in drug–drug interactions which can result in adverse responses, life-threatening toxicity or impaired efficacy. Significant species differences in the interaction of compounds with drug metabolizing enzymes and transporters have been described. 2. In order to overcome the limitation of animal models in accurately predicting human responses, a large variety of mouse models humanized for drug metabolizing enzymes and to a lesser extent drug transporters have been created. 3. This review summarizes the literature describing these mouse models and their key applications in studying the role of drug metabolizing enzymes and transporters in drug bioavailability, tissue distribution, clearance and drug–drug interactions as well as in human metabolite testing and risk assessment. 4. Though such humanized mouse models have certain limitations, there is great potential for their use in basic research and for testing and development of new medicines. These limitations and future potentials will be discussed. KW - transporters KW - human metabolites KW - drug metabolising enzymes KW - drug–drug interactions KW - bioavailability Y1 - 2014 U6 - http://dx.doi.org/10.3109/00498254.2013.815831 SN - 1366-5928 VL - 44 IS - 2 SP - 96 EP - 108 PB - Taylor & Francis CY - Abingdon ER - TY - JOUR A1 - Scheer, Nico A1 - Wolf, C. Roland T1 - Xenobiotic receptor humanized mice and their utility JF - Drug Metabolism Reviews Y1 - 2013 U6 - http://dx.doi.org/10.3109/03602532.2012.738687 SN - 1097-9883 IS - 1 SP - 110 EP - 121 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Scheer, Nico A1 - Snaith, Mike A1 - Wolf, C. Roland A1 - Seibler, Jost T1 - Generation and utility of genetically humanized mouse models JF - Drug Discovery Today Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.drudis.2013.07.007 SN - 1359-6446 VL - Vol 18 IS - 23-24 SP - 1200 EP - 1211 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Scheer, Nico A1 - Ross, Jillian A1 - Rode, Anja A1 - Zevnik, Branko A1 - Niehaves, Sandra A1 - Faust, Nicole A1 - Wolf, C. Roland T1 - A novel panel of mouse models to evaluate the role of human pregnane X receptor and constitutive androstane receptor in drug response JF - Journal of Clinical Investigation Y1 - 2008 U6 - http://dx.doi.org/https://doi.org/10.1172/JCI35483 SN - 1558-8238 VL - 118 IS - 9 SP - 3228 EP - 3239 ER - TY - JOUR A1 - Scheer, Nico A1 - Ross, Jillian A1 - Kapelyukh, Yury A1 - Rode, Anja A1 - Wolf, C. Roland T1 - In vivo responses of the human and murine pregnane X receptor to dexamethasone in mice JF - Drug Metabolism and Disposition N2 - Dexamethasone (DEX) is a potent and widely used anti-inflammatory and immunosuppressant glucocorticoid. It can bind and activate the pregnane X receptor (PXR), which plays a critical role as xenobiotic sensor in mammals to induce the expression of many enzymes, including cytochromes P450 in the CYP3A family. This induction results in its own metabolism. We have used a series of transgenic mouse lines, including a novel, improved humanized PXR line, to compare the induction profile of PXR-regulated drug-metabolizing enzymes after DEX administration, as well as looking at hepatic responses to rifampicin (RIF). The new humanized PXR model has uncovered further intriguing differences between the human and mouse receptors in that RIF only induced Cyp2b10 in the new humanized model. DEX was found to be a much more potent inducer of Cyp3a proteins in wild-type mice than in mice humanized for PXR. To assess whether PXR is involved in the detoxification of DEX in the liver, we analyzed the consequences of high doses of the glucocorticoid on hepatotoxicity on different PXR genetic backgrounds. We also studied these effects in an additional mouse model in which functional mouse Cyp3a genes have been deleted. These strains exhibited different sensitivities to DEX, indicating a protective role of the PXR and CYP3A proteins against the hepatotoxicity of this compound. Y1 - 2010 U6 - http://dx.doi.org/10.1124/dmd.109.031872 SN - 1521-009X VL - 38 IS - 7 SP - 1046 EP - 1053 PB - ASPET CY - Bethesda ER - TY - JOUR A1 - Scheer, Nico A1 - Kapelyukh, Yury A1 - Rode, Anja A1 - Oswald, Stefan A1 - Busch, Diana A1 - Mclaughlin, Lesley A. A1 - Lin, De A1 - Henderson, Colin J. A1 - Wolf, C. Roland T1 - Defining Human Pathways of Drug Metabolism In Vivo through the Development of a Multiple Humanized Mouse Model JF - Drug Metabolism and Disposition Y1 - 2015 U6 - http://dx.doi.org/10.1124/dmd.115.065656 SN - 1521-009x VL - 43 IS - 11 SP - 1679 EP - 1690 PB - ASPET CY - Bethesda ER - TY - JOUR A1 - Scheer, Nico A1 - Kapelyukh, Yury A1 - Rode, Anja A1 - Buechel, Sandra A1 - Wolf, C. Roland T1 - Generation and characterization of novel cytochrome P450 Cyp2c gene cluster knockout and CYP2C9 humanized mouse lines JF - Molecular Pharmacology N2 - Compared with rodents and many other animal species, the human cytochrome P450 (P450) Cyp2c gene cluster varies significantly in the multiplicity of functional genes and in the substrate specificity of its enzymes. As a consequence, the use of wild-type animal models to predict the role of human CYP2C enzymes in drug metabolism and drug-drug interactions is limited. Within the human CYP2C cluster CYP2C9 is of particular importance, because it is one of the most abundant P450 enzymes in human liver, and it is involved in the metabolism of a wide variety of important drugs and environmental chemicals. To investigate the in vivo functions of cytochrome P450 Cyp2c genes and to establish a model for studying the functions of CYP2C9 in vivo, we have generated a mouse model with a deletion of the murine Cyp2c gene cluster and a corresponding humanized model expressing CYP2C9 specifically in the liver. Despite the high number of functional genes in the mouse Cyp2c cluster and the reported roles of some of these proteins in different biological processes, mice deleted for Cyp2c genes were viable and fertile but showed certain phenotypic alterations in the liver. The expression of CYP2C9 in the liver also resulted in viable animals active in the metabolism and disposition of a number of CYP2C9 substrates. These mouse lines provide a powerful tool for studying the role of Cyp2c genes and of CYP2C9 in particular in drug disposition and as a factor in drug-drug interaction. Y1 - 2012 U6 - http://dx.doi.org/10.1124/mol.112.080036 SN - 1521-0111 VL - 82 IS - 6 SP - 1022 EP - 1029 PB - ASPET CY - Bethesda, Md. ER -