TY - JOUR A1 - Vu, Duc-Khoi A1 - Staat, Manfred T1 - An algorithm for shakedown analysis of structure with temperature dependent yield stress N2 - This work is an attempt to answer the question: How to use convex programming in shakedown analysis of structures made of materials with temperature-dependent properties. Based on recently established shakedown theorems and formulations, a dual relationship between upper and lower bounds of the shakedown limit load is found, an algorithmfor shakedown analysis is proposed. While the original problem is neither convex nor concave, the algorithm presented here has the advantage of employing convex programming tools. KW - Einspielen KW - Temperaturabhängigkeit KW - Fließgrenze KW - Shakedown KW - shakedown analysis KW - yield stress Y1 - 2004 ER - TY - CHAP A1 - Staat, Manfred A1 - Heitzer, Michael T1 - Direct static FEM approach to limit and shakedown analysis N2 - Safety and reliability of structures may be assessed indirectly by stress distributions. Limit and shakedown theorems are simplified but exact methods of plasticity that provide safety factors directly in the loading space. These theorems may be used for a direct definition of the limit state function for failure by plastic collapse or by inadaptation. In a FEM formulation the limit state function is obtained from a nonlinear optimization problem. This direct approach reduces considerably the necessary knowledge of uncertain technological input data, the computing time, and the numerical error. Moreover, the direct way leads to highly effective and precise reliability analyses. The theorems are implemented into a general purpose FEM program in a way capable of large-scale analysis. KW - Einspielen KW - Nichtlineare Optimierung KW - Shakedown KW - Shakedown KW - limit load KW - lower bound theorem KW - nonlinear optimization KW - reliability Y1 - 2000 ER - TY - CHAP A1 - Staat, Manfred A1 - Heitzer, Michael T1 - The restricted influence of kinematic hardening on shakedown loads N2 - Structural design analyses are conducted with the aim of verifying the exclusion of ratcheting. To this end it is important to make a clear distinction between the shakedown range and the ratcheting range. In cyclic plasticity more sophisticated hardening models have been suggested in order to model the strain evolution observed in ratcheting experiments. The hardening models used in shakedown analysis are comparatively simple. It is shown that shakedown analysis can make quite stable predictions of admissible load ranges despite the simplicity of the underlying hardening models. A linear and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis. Both give identical or similar shakedown ranges. Structural shakedown analyses show that the loading may have a more pronounced effect than the hardening model. KW - Biomedizinische Technik KW - Einspielen KW - Shakedown KW - Ratcheting KW - Bruchmechanik KW - shakedown KW - material shakedown KW - linear kinematic hardening KW - nonlinear kinematic hardening KW - ratchetting Y1 - 2002 ER -