TY - JOUR A1 - Artmann, Gerhard T1 - 2nd International Conference on Medical Biorheology (ICMB). Shanghai, China, September 13-15, 1995. Shi, Young de, Artmann, Gerhard Michael, Meiselman, Herbert J. JF - Biorheology. 33 (1996), H. 6 Y1 - 1996 SN - 0006-355x SP - 505 EP - 507 ER - TY - JOUR A1 - Digel, Ilya A1 - Dachwald, Bernd A1 - Artmann, Gerhard A1 - Linder, Peter A1 - Funke, O. T1 - A concept of a probe for particle analysis and life detection in icy environments Y1 - 2009 N1 - International workshop “Europa lander: science goals and experiments”, Space Research Institute (IKI), Moscow, Russia 9-13 February 2009 SP - 1 EP - 24 ER - TY - JOUR A1 - Artmann, Gerhard T1 - A microscopic photometric method for measuring erythrocyte deformability. Artmann, Gerhard Michael JF - Clinical Hemorheology. 6 (1986) Y1 - 1986 SN - 0271-5198 SP - 617 EP - 627 ER - TY - JOUR A1 - Artmann, Gerhard A1 - Shi, Young de A1 - Agosti, R. A1 - Longhini, E. T1 - A modified casson equation to characterize blood rheology for hypertension. Shi, Young de; Artmann, Gerhard Michael; Agosti, R.; Longhini, E. JF - Clinical Hemorheology Microcirculation. 19 (1998), H. 2 Y1 - 1998 SN - 1386-0291 SP - 115 EP - 127 ER - TY - JOUR A1 - Uysal, Karya A1 - Firat, Ipek Serat A1 - Creutz, Till A1 - Aydin, Inci Cansu A1 - Artmann, Gerhard A1 - Teusch, Nicole A1 - Temiz Artmann, Aysegül T1 - A novel in vitro wound healing assay using free-standing, ultra-thin PDMS membranes JF - membranes N2 - Advances in polymer science have significantly increased polymer applications in life sciences. We report the use of free-standing, ultra-thin polydimethylsiloxane (PDMS) membranes, called CellDrum, as cell culture substrates for an in vitro wound model. Dermal fibroblast monolayers from 28- and 88-year-old donors were cultured on CellDrums. By using stainless steel balls, circular cell-free areas were created in the cell layer (wounding). Sinusoidal strain of 1 Hz, 5% strain, was applied to membranes for 30 min in 4 sessions. The gap circumference and closure rate of un-stretched samples (controls) and stretched samples were monitored over 4 days to investigate the effects of donor age and mechanical strain on wound closure. A significant decrease in gap circumference and an increase in gap closure rate were observed in trained samples from younger donors and control samples from older donors. In contrast, a significant decrease in gap closure rate and an increase in wound circumference were observed in the trained samples from older donors. Through these results, we propose the model of a cell monolayer on stretchable CellDrums as a practical tool for wound healing research. The combination of biomechanical cell loading in conjunction with analyses such as gene/protein expression seems promising beyond the scope published here. Y1 - 2022 U6 - http://dx.doi.org/10.3390/membranes13010022 N1 - This article belongs to the Special Issue "Latest Scientific Discoveries in Polymer Membranes" VL - 2023 IS - 13(1) PB - MDPI CY - Basel ER - TY - JOUR A1 - Artmann, Gerhard A1 - Trzewik, Jürgen A1 - Ates, M. T1 - A novel method to quantify mechanical tension in cell monolayers. Trzewik, Jürgen; Ates, M., Artmann, Gerhard Michael JF - Biomedizinische Technik. 47 (2002), H. Suppl. 1. Pt. 1 Y1 - 2002 SN - 0013-5585 N1 - Druckausgabe unter 63 Z 47 vorhanden SP - 379 EP - 381 ER - TY - JOUR A1 - Artmann, Gerhard A1 - Li, Anlan A1 - Ziemer, J. A1 - Schneider, G. [u.a.] T1 - A photometric method to analyze induced erythrocyte shape changes. Artmann, Gerhard Michael; Li, Anlan; Ziemer, J.; Schneider, G.; Sahm, U.: ; Ziemer, J.; Schneider, G.; Sahm, U. JF - Biorheology. 33 (1996), H. 3 Y1 - 1996 SN - 0006-355x SP - 251 EP - 265 ER - TY - JOUR A1 - Kaul, D. K. A1 - Koshkaryev, A. A1 - Artmann, Gerhard A1 - Barshtein, G. A1 - Yedgar, S. T1 - Additive effect of red blood cell rigidity and adherence to endothelial cells in inducing vascular resistance JF - American Journal of Physiology : Heart and Circulation Physiology . 295 (2008), H. 4 Y1 - 2008 SN - 1522-1539 VL - 295 IS - 4 SP - H1788 EP - H1793 ER - TY - JOUR A1 - Kozhalakova, A. A. A1 - Zhubanova, Azhar A. A1 - Mansurov, Z. A. A1 - Digel, Ilya A1 - Tazhibayeva, S. M. A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Adsorption of bacterial lipopolysaccharides on carbonized rice shell JF - Science of Central Asia (2010) Y1 - 2010 SP - 50 EP - 54 ER - TY - JOUR A1 - Uysal, Karya A1 - Creutz, Till A1 - Firat, Ipek Seda A1 - Artmann, Gerhard A1 - Teusch, Nicole A1 - Temiz Artmann, Aysegül T1 - Bio-functionalized ultra-thin, large-area and waterproof silicone membranes for biomechanical cellular loading and compliance experiments JF - Polymers N2 - Biocompatibility, flexibility and durability make polydimethylsiloxane (PDMS) membranes top candidates in biomedical applications. CellDrum technology uses large area, <10 µm thin membranes as mechanical stress sensors of thin cell layers. For this to be successful, the properties (thickness, temperature, dust, wrinkles, etc.) must be precisely controlled. The following parameters of membrane fabrication by means of the Floating-on-Water (FoW) method were investigated: (1) PDMS volume, (2) ambient temperature, (3) membrane deflection and (4) membrane mechanical compliance. Significant differences were found between all PDMS volumes and thicknesses tested (p < 0.01). They also differed from the calculated values. At room temperatures between 22 and 26 °C, significant differences in average thickness values were found, as well as a continuous decrease in thicknesses within a 4 °C temperature elevation. No correlation was found between the membrane thickness groups (between 3–4 µm) in terms of deflection and compliance. We successfully present a fabrication method for thin bio-functionalized membranes in conjunction with a four-step quality management system. The results highlight the importance of tight regulation of production parameters through quality control. The use of membranes described here could also become the basis for material testing on thin, viscous layers such as polymers, dyes and adhesives, which goes far beyond biological applications. Y1 - 2022 SN - 2073-4360 VL - 14 IS - 11 SP - 2213 PB - MDPI CY - Basel ER -