TY - JOUR A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Kubalski, Thomas A1 - Fehling, Ekkehard A1 - Pfetzing, Thomas A1 - Meyer, Udo ED - Voss, Michael T1 - Auslegung von Stahlbetonrahmentragwerken mit Ausfachungen aus Ziegelmauerwerk (Teil 1) T1 - Design of reinforced concrete enclosures infilled with clay block masonry (Part 1) JF - Ziegelindustrie international : ZI = Brick and tile industry international N2 - Im Rahmen des europäischen Verbundprojekts INSYSME wurden von den deutschen Partnern die Systeme IMES und INODIS zur Verbesserung des seismischen Verhaltens von ausgefachten Stahlbetonrahmen entwickelt. Ziel beider Systeme ist es, Stahlbetonrahmen und Ausfachung zu entkoppeln, anstatt die Tragfähigkeit durch aufwendige und kostspielige zusätzliche Bewehrungseinlagen zu erhöhen. Erste Ergebnisse des Systems IMES für Belastungen in und senkrecht zu der Wandebene werden vorgestellt. N2 - Within the scope of the joint European project INSYSME, the German partners developed two systems - IMES and INODIS - for improving the seismic behaviour of masonry infilled reinforced concrete frames. The purpose of both systems is to decouple frame and infill instead of working to improve their load-bearing capacity by means of elaborate, expensive, supplementary reinforcing elements. Initial findings for the IMES system with regard to the loads acting in-plane and perpendicular to the wall plane (out-of-plane) are presented. Y1 - 2018 SN - 0341-0552 IS - 4 SP - 30 EP - 39 PB - Bauverlag BV GmbH CY - Gütersloh ER - TY - JOUR A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Kubalski, Thomas A1 - Fehling, Ekkehard A1 - Pfetzing, Thomas A1 - Meyer, Udo ED - Voss, Michael T1 - Auslegung von Stahlbetonrahmentragwerken mit Ausfachungen aus Ziegelmauerwerk (Teil 2) T1 - Design of reinforced concrete enclosures infilled with clay block masonry (Part 2) JF - Ziegelindustrie international : ZI = Brick and tile industry international N2 - Im Rahmen des europäischen Verbundprojekts INSYSME wurden von den deutschen Partnern die Systeme IMES und INODIS zur Verbesserung des seismischen Verhaltens von ausgefachten Stahlbetonrahmen entwickelt. Ziel beider Systeme ist es, Stahlbetonrahmen und Ausfachung zu entkoppeln, anstatt die Tragfähigkeit durch aufwendige und kostspielige zusätzliche Bewehrungseinlagen zu erhöhen. Erste Ergebnisse des Systems IMES für Belastungen in und senkrecht zu der Wandebene werden vorgestellt. N2 - Within the scope of the joint European project INSYSME, the German partners developed two systems - IMES and INODIS - for improving the seismic behaviour of masonry infilled reinforced concrete frames. The purpose of both systems is to decouple frame and infill instead of working to improve their load-bearing capacity by means of elaborate, expensive, supplementary reinforcing elements. Initial findings for the IMES system with regard to the loads acting in-plane and perpendicular to the wall plane (out-of-plane) are presented. Y1 - 2018 SN - 0341-0552 IS - 6 SP - 24 EP - 43 PB - Bauverlag BV GmbH CY - Gütersloh ER - TY - CHAP A1 - Milijaš, Aleksa A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Gams, Matija A1 - Klinkel, Sven ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Effects of prior in-plane damage on out-of-plane response of masonry infills with openings T2 - The Third European Conference on Earthquake Engineering and Seismology September 4 – September 9, 2022, Bucharest N2 - Masonry infill walls are the most traditional enclosure system that is still widely used in RC frame buildings all over the world, particularly in seismic active regions. Although infill walls are usually neglected in seismic design, during an earthquake event they are subjected to in-plane and out-of-plane forces that can act separately or simultaneously. Since observations of damage to buildings after recent earthquakes showed detrimental effects of in-plane and out-of-plane load interaction on infill walls, the number of studies that focus on influence of in-plane damage on out-of-plane response has significantly increased. However, most of the xperimental campaigns have considered only solid infills and there is a lack of combined in-plane and out-of-plane experimental tests on masonry infills with openings, although windows and doors strongly affect seismic performance. In this paper, two types of experimental tests on infills with window openings are presented. The first is a pure out-of-plane test and the second one is a sequential in-plane and out-of-plane test aimed at investigating the effects of existing in-plane damage on outof-plane response. Additionally, findings from two tests with similar load procedure that were carried out on fully infilled RC frames in the scope of the same project are used for comparison. Test results clearly show that window opening increased vulnerability of infills to combined seismic actions and that prevention of damage in infills with openings is of the utmost importance for seismic safety. KW - Seismic loading KW - In-plane load KW - Out-of-plane load KW - Interaction KW - Window opening Y1 - 2022 SN - 978-973-100-533-1 SP - 2747 EP - 2756 ER - TY - CHAP A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Experimental and numerical analysis of RC frames with decoupled masonry infills T2 - 7th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - Masonry infill walls are commonly used in reinforced concrete (RC) frame structures, also in seismically active areas, although they often experience serious damage during earthquakes. One of the main reasons for their poor behaviour is the connection to the frame, which is usually constructed using mortar. This paper describes the novel solution for infill/frame connection based on application of elastomeric material between them. The system called INODIS (Innovative Decoupled Infill System) has the aim to postpone the activation of infill in in-plane direction and at the same time to provide sufficient out-of-plane support. First, experimental tests on infilled frame specimens are presented and the comparison of the results between traditionally infilled frames and infilled frames with the INODIS system are given. The results are then used for calibration and validation of numerical model, which can be further employed for investigating the influence of some material parameters on the behaviour of infilled frames with the INODIS system. KW - Earthquake KW - In-plane KW - Out-of-plane KW - Isolation KW - Seismic Y1 - 2019 SN - 978-618-82844-5-6 U6 - http://dx.doi.org/10.7712/120119.7088.18845 SN - 2623-3347 N1 - COMPDYN 2019, 24-26 June 2019, Crete, Greece. SP - 2464 EP - 2479 PB - National Technical University of Athens CY - Athen ER - TY - CHAP A1 - Milijaš, Aleksa A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Experimental investigation of behaviour of masonry infilled RC frames under out-of-plane loading T2 - 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - Masonry infills are commonly used as exterior or interior walls in reinforced concrete (RC) frame structures and they can be encountered all over the world, including earthquake prone regions. Since the middle of the 20th century the behaviour of these non-structural elements under seismic loading has been studied in numerous experimental campaigns. However, most of the studies were carried out by means of in-plane tests, while there is a lack of out-of-plane experimental investigations. In this paper, the out-of-plane tests carried out on full scale masonry infilled frames are described. The results of the out-of-plane tests are presented in terms of force-displacement curves and measured out-of-plane displacements. Finally, the reliability of existing analytical approaches developed to estimate the out-of-plane strength of masonry infills is examined on presented experimental results. KW - Seismic loading KW - Masonry infill KW - Out-of-plane load KW - Out-of-plane strength Y1 - 2021 SN - 978-618-85072-5-8 U6 - http://dx.doi.org/10.7712/120121.8528.18914 SN - 2623-3347 N1 - COMPDYN 2021 28-30 June 2021, Streamed from Athens, Greece SP - 829 EP - 846 PB - National Technical University of Athens CY - Athen ER - TY - CHAP A1 - Butenweg, Christoph A1 - Bursi, Oreste S. A1 - Nardin, Chiara A1 - Lanese, Igor A1 - Pavese, Alberto A1 - Marinković, Marko A1 - Paolacci, Fabrizio A1 - Quinci, Gianluca T1 - Experimental investigation on the seismic performance of a multi-component system for major-hazard industrial facilities T2 - Pressure Vessels & Piping Virtual Conference July 13-15, 2021 N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behaviour of the test structure and of its relative several installations is investigated. Furthermore, both process components and primary structure interactions are considered and analyzed. Several PGA-scaled artificial ground motions are applied to study the seismic response at different levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the experimental setup of the investigated structure and installations, selected measurement data and describes the obtained damage. Furthermore, important findings for the definition of performance limits, the effectiveness of floor response spectra in industrial facilities will be presented and discussed. KW - industrial facilities KW - piping KW - installations KW - seismic loading KW - earthquakes Y1 - 2021 SN - 9780791885352 U6 - http://dx.doi.org/10.1115/PVP2021-61696 PB - American Society of Mechanical Engineers (ASME) CY - New York ER - TY - JOUR A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Ford, Michael C. T1 - Experimental testing of decoupled masonry infills with steel anchors for out-of-plane support under combined in-plane and out-of-plane seismic loading JF - Construction and Building Materials N2 - Because of simple construction process, high energy efficiency, significant fire resistance and excellent sound isolation, masonry infilled reinforced concrete (RC) frame structures are very popular in most of the countries in the world, as well as in seismic active areas. However, many RC frame structures with masonry infills were seriously damaged during earthquake events, as the traditional infills are generally constructed with direct contact to the RC frame which brings undesirable infill/frame interaction. This interaction leads to the activation of the equivalent diagonal strut in the infill panel, due to the RC frame deformation, and combined with seismically induced loads perpendicular to the infill panel often causes total collapses of the masonry infills and heavy damages to the RC frames. This fact was the motivation for developing different approaches for improving the behaviour of masonry infills, where infill isolation (decoupling) from the frame has been more intensively studied in the last decade. In-plane isolation of the infill wall reduces infill activation, but causes the need for additional measures to restrain out-of-plane movements. This can be provided by installing steel anchors, as proposed by some researchers. Within the framework of European research project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings) the system based on a use of elastomers for in-plane decoupling and steel anchors for out-of-plane restrain was tested. This constructive solution was tested and deeply investigated during the experimental campaign where traditional and decoupled masonry infilled RC frames with anchors were subjected to separate and combined in-plane ‬and out-of-plane loading. Based on a detailed evaluation and comparison of the test results, the performance and effectiveness of the developed system are illustrated. KW - Masonry infill KW - Reinforced concrete frame KW - Earthquake KW - INSYSME KW - Decoupling Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.conbuildmat.2021.126041 SN - 1879-0526 SN - 0950-0618 VL - 318 IS - 1 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Šakić, Bogdan A1 - Milijaš, Aleksa A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Klinkel, Sven ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Influence of prior in-plane damage on the out-of-plane response of non-load bearing unreinforced masonry walls under seismic load T2 - 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - Reinforced concrete frames with masonry infill walls are popular form of construction all over the world as well in seismic regions. While severe earthquakes can cause high level of damage of both reinforced concrete and masonry infills, earthquakes of lower to medium intensity some-times can cause significant level of damage of masonry infill walls. Especially important is the level of damage of face loaded infill masonry walls (out-of-plane direction) as out-of-plane load cannot only bring high level of damage to the wall, it can also be life-threating for the people near the wall. The response in out-of-plane direction directly depends on the prior in-plane damage, as previous investigation shown that it decreases resistance capacity of the in-fills. Behaviour of infill masonry walls with and without prior in-plane load is investigated in the experimental campaign and the results are presented in this paper. These results are later compared with analytical approaches for the out-of-plane resistance from the literature. Conclusions based on the experimental campaign on the influence of prior in-plane damage on the out-of-plane response of infill walls are compared with the conclusions from other authors who investigated the same problematic. KW - Earthquake Engineering KW - Unreinforced masonry walls KW - Out-of-plane load KW - In- plane damage KW - Out-of-plane failure Y1 - 2021 SN - 9786188507258 U6 - http://dx.doi.org/10.7712/120121.8527.18913 SN - 2623-3347 N1 - COMPDYN 2021 28-30 June 2021, Streamed from Athens, Greece SP - 808 EP - 828 PB - National Technical University of Athens CY - Athen ER - TY - JOUR A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Klinkel, Sven ED - Yang, J. T1 - Influence of slab deflection on the out-of-plane capacity of unreinforced masonry partition walls JF - Engineering Structures N2 - Severe damage of non-structural elements is noticed in previous earthquakes, causing high economic losses and posing a life threat for the people. Masonry partition walls are one of the most commonly used non-structural elements. Therefore, their behaviour under earthquake loading in out-of-plane (OOP) direction is investigated by several researches in the past years. However, none of the existing experimental campaigns or analytical approaches consider the influence of prior slab deflection on OOP response of partition walls. Moreover, none of the existing construction techniques for the connection of partition walls with surrounding reinforced concrete (RC) is investigated for the combined slab deflection and OOP loading. However, the inevitable time-dependent behaviour of RC slabs leads to high values of final slab deflections which can further influence boundary conditions of partition walls. Therefore, a comprehensive study on the influence of slab deflection on the OOP capacity of masonry partitions is conducted. In the first step, experimental tests are carried out. Results of experimental tests are further used for the calibration of the numerical model employed for a parametric study. Based on the results, behaviour under combined loading for different construction techniques is explained. The results show that slab deflection leads either to severe damage or to a high reduction of OOP capacity. Existing practical solutions do not account for these effects. In this contribution, recommendations to overcome the problems of combined slab deflection and OOP loading on masonry partition walls are given. Possible interaction of in-plane (IP) loading, with the combined slab deflection and OOP loading on partition walls, is not investigated in this study. KW - Masonry partition walls KW - Earthquake KW - Out-of-plane capacity KW - Slab deflection Y1 - 2023 U6 - http://dx.doi.org/10.1016/j.engstruct.2022.115342 SN - 0141-0296 VL - 276 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Kubalski, Thomas A1 - Fehling, Ekkehard A1 - Pfetzing, Thomas A1 - Meyer, Udo ED - Zabel, Volkmar ED - Beinersdorf, Silke T1 - Innovative Ansätze für die seismische Auslegung von Stahlbetonrahmentragwerken mit Ausfachungen aus Ziegelmauerwerk T2 - Vortragsband der 15. D-A-CH-Tagung Erdbebeningenieurwesen und Baudynamik KW - Stahlbetonrahmen KW - Ausfachungsmauerwerk KW - INSYSME KW - Erdbeben KW - Ziegelmauerwerk Y1 - 2017 SN - 978-3-930108-13-5 SP - 130 EP - 145 PB - Deutsche Gesellschaft für Erdbebeningenieurwesen und Baudynamik (DGEB) e.V. CY - Weimar ER -