TY - CHAP A1 - Merten, Sabine A1 - Conrad, Thorsten A1 - Kämper, Klaus-Peter A1 - Picard, Antoni A1 - Schütze, Andreas T1 - Virtual Technology Labs - an efficient tool for the preparation of hands-on-MEMS-courses in training foundries N2 - Hands-on-training in high technology areas is usually limited due to the high cost for lab infrastructure and equipment. One specific example is the field of MEMS, where investment and upkeep of clean rooms with microtechnology equipment is either financed by production or R&D projects greatly reducing the availability for education purposes. For efficient hands-on-courses a MEMS training foundry, currently used jointly by six higher education institutions, was established at FH Kaiserslautern. In a typical one week course, students manufacture a micromachined pressure sensor including all lithography, thin film and packaging steps. This compact and yet complete program is only possible because participants learn to use the different complex machines in advance via a Virtual Training Lab (VTL). In this paper we present the concept of the MEMS training foundry and the VTL preparation together with results from a scientific evaluation of the VTL over the last three years. KW - Virtuelles Laboratorium KW - Virtuelles Labor KW - Hand-on-training KW - Virtual Technology Lab KW - MEMS ; education and training foundry Y1 - 2006 ER - TY - CHAP A1 - Sedlacek, G. A1 - Geßler, A. A1 - Schleser, Markus A1 - Mund, F. A1 - Völling, B. T1 - Verbindungen vorgefertigter Textilbetonbauteile T2 - Textile reinforced structures : proceedings of the 2nd Colloquium on Textile Reinforced Structures (CTRS2), Dresden, Germany, 29.9. - 1.10.2003 Y1 - 2003 SN - 3-86005-386-8 SP - 481 EP - 493 PB - Techn. Univ. CY - Dresden ER - TY - CHAP A1 - Nakagawa, Masaki A1 - Michaux, Frank A1 - Kallweit, Stephan A1 - Maeda, Kazuhiro T1 - Unsteady flow measurements in the wake behind a wind-tunnel car model by using high-speed planar PIV T2 - 11TH International Symposium on Particle Image Velocimetry – PIV15 Santa Barbara, California, September 14-16, 2015 N2 - This study investigates unsteady characteristics of the wake behind a 28%-scale car model in a wind tunnel using highspeed planar particle image velocimetry (PIV). The car model is based on a hatchback passenger car that is known to have relatively high fluctuations in its aerodynamic loads. This study primarily focuses on the lateral motion of the flow on the horizontal plane to determine the effect of the flow motion on the straight-line stability and the initial steering response of the actual car on a track. This paper first compares the flow fields in the wake behind the above mentioned model obtained using conventional and high-speed planar PIV, with sampling frequencies of 8 Hz and 1 kHz, respectively. Large asymmetrically coherent flow structures, which fluctuate at frequencies below 2 Hz, are observed in the results of highspeed PIV measurements, whereas conventional PIV is unable to capture these features of the flow owing to aliasing. This flow pattern with a laterally swaying motion is represented by opposite signs of cross-correlation coefficients of streamwise velocity fluctuations for the two sides of the car model. Effects of two aerodynamic devices that are known to reduce the fluctuation levels of the aerodynamic loads are then extensively investigated. The correlation analyses reveal that these devices indeed reduce the fluctuation levels of the flow and the correlation values around the rear combination-lamp, but it is found that the effects of these devices are different around the c-pillar. Y1 - 2015 ER - TY - CHAP A1 - Gregorio, Fabrizio de A1 - Fatigati, Giovanni A1 - Kallweit, Stephan T1 - Tiltrotor airframe flow field characterization by SPIV T2 - 11th International Symposium on Partivle Image Velocimetry - PIV15 , Santa Barbara, California, Sept 14-16, 2015 Y1 - 2015 ER - TY - JOUR A1 - Kämper, Klaus-Peter A1 - Picard, Antoni A1 - Brill, Manfred A1 - Cassel, Detlev A1 - Jentsch, Andreas A1 - Merten, Sabine A1 - Rollwa, Markus T1 - The Virtual Clean Room - a new tool in teaching MST process technologies N2 - The Virtual Clean Room - a new tool in teaching MST process technologies University education in high-technology fields like MST is not complete without intensive laboratory sessions. Students cannot fully grasp the complexity and the special problems related to the manufacturing of microsystems without a thorough hands-on experience in a MST clean room. KW - Virtuelle Maschine KW - VM KW - Mikrosystemtechnik KW - MST KW - virtual clean room Y1 - 2003 ER - TY - CHAP A1 - Gebhardt, Andreas T1 - Technology Diffusion through a Multi-Level Technology Transfer Infrastructure. Contribution to the 1st. All Africa Technology Diffusion Conference Boksburg, South Africa June 12th - 14th 2006 N2 - Table of contents 1. Introduction 2. Multi-level Technology Transfer Infrastructure 2.1 Level 1: University Education – Encourage the Idea of becoming an Entrepreneur 2.2 Level 2: Post Graduate Education – Improve your skills and focus it on a product family. 2.3 Level 3: Birth of a Company – Focus your skills on a product and a market segment. 2.4 Level 4: Ready to stand alone – Set up your own business 2.5 Level 5: Grow to be Strong – Develop your business 2.6 Level 6: Competitive and independent – Stay innovative. 3. Samples 3.1 Sample 1: Laser Processing and Consulting Centre, LBBZ 3.2 Sample 2: Prototyping Centre, CP 4. Funding - Waste money or even lost Money? 5. Conclusion KW - Technologietransfer KW - technology transfer KW - technology diffusion Y1 - 2006 ER - TY - GEN A1 - Gebhardt, Andreas T1 - Short course on rapid prototyping N2 - Rapid Prototyping Technology: Types of models, rapid prototyping processes, prototyper Fundamentals of rapid prototyping Industrial rapid prototyping technology: Stereolithography, (Selective) laser sintering ((S)LS), Layer laminate manufacturing (LLM), Fused layer modeling (FLM), Three dimensional printing (3DP) KW - Rapid Prototyping KW - Rapid Prototyping Y1 - 2005 ER - TY - GEN A1 - Kämper, Klaus-Peter T1 - Lecture notes Sensors and Actuators WS 2008/2009 N2 - Password necessarily. Access only for Students by Prof. Dr. Klaus-Peter Kämper. Winter semester 2008/2009. 488 pages (pdf) Contents 1. Introduction 2. Introduction to Sensors 3. Introduction to Microfabrication 4. Pressure Sensors 5. Acceleration Sensors 6. Angular Rate Sensors 7. Position Sensors 8. Flow Sensors 9. Piezoelectric Actuators 10. Magnetostrictive Actuators 11. Actuators based on Shape Memory Alloys 12. Actuators based on Electrorheological Fluids 13. Actuators based on Magnetorheological Fluids 14. Index N2 - Kennwortgeschützter Zugang nur für Studierende bei Prof. Dr. Klaus-Peter Kämper. Wintersemester 2008/2009. 488 Seiten (pdf-Format) KW - Sensor KW - Aktor KW - Sensoren KW - Aktoren KW - Sensores KW - Actuators KW - Microfabrication Y1 - 2008 ER - TY - GEN A1 - Kämper, Klaus-Peter T1 - Lecture notes Sensors and Actuators N2 - Kennwortgeschützter Zugang nur für Studierende bei Prof. Dr. Klaus-Peter Kämper. Wintersemester 2007/2008. Version vom 30.08.2007. 472 Seiten (pdf-Format) N2 - Password necessarily. Access only for Students by Prof. Dr. Klaus-Peter Kämper. Winter semester 2007/2008. Version 2007-08-30. 472 pages (pdf) Contents 1. Introduction 2. Introduction to Sensors 3. Introduction to Microfabrication 4. Pressure Sensors 5. Acceleration Sensors 6. Angular Rate Sensors 7. Position Sensors 8. Flow Sensors 9. Piezoelectric Actuators 10. Magnetostrictive Actuators 11. Actuators based on Shape Memory Alloys 12. Actuators based on Electrorheological Fluids 13. Actuators based on Magnetorheological Fluids KW - Sensor KW - Aktor KW - Sensoren KW - Aktoren KW - Sensores KW - Actuators KW - Microfabrication Y1 - 2007 ER - TY - CHAP A1 - Ferrein, Alexander A1 - Kallweit, Stephan A1 - Scholl, Ingrid A1 - Reichert, Walter T1 - Learning to Program Mobile Robots in the ROS Summer School Series T2 - Proceedings 6th International Conference on Robotics in Education (RiE 15) N2 - The main objective of our ROS Summer School series is to introduce MA level students to program mobile robots with the Robot Operating System (ROS). ROS is a robot middleware that is used my many research institutions world-wide. Therefore, many state-of-the-art algorithms of mobile robotics are available in ROS and can be deployed very easily. As a basic robot platform we deploy a 1/10 RC cart that is wquipped with an Arduino micro-controller to control the servo motors, and an embedded PC that runs ROS. In two weeks, participants get to learn the basics of mobile robotics hands-on. We describe our teaching concepts and our curriculum and report on the learning success of our students. Y1 - 2015 ER -