TY - JOUR A1 - Turaliyeva, M. A1 - Yeshibaev, A. A1 - Saparbekova, A. A1 - Akynova, L. A1 - Abildayeva, R. A1 - Sadenova, M. A1 - Sartayeva, K. A1 - Schieffer, Andre A1 - Digel, Ilya T1 - Species composition and injuriousness of stranger xylophilous fauna affecting indigenous urban dendroflora of Central Asia JF - Asian journal of microbiology, biotechnology & environmental sciences : AJMBES N2 - At the present time, one of the most serious environmental problems of Central Asia and South Kazakhstan is the ongoing large-scale deterioration of principal urban tree populations. Several major centers of massive spread of invasive plant pests have been found in urban dendroflora of this region. The degree of damage of seven most wide-spread aboriginal tree species was found to range from 21.4±1.1 to 85.4±1.8%. In particular, the integrity of the native communities of sycamore (Platanus spp.), willow (Salix spp.), poplar (Populus spp.) and elm (Ulmus spp.) is highly endangered. Our taxonomic analysis of the most dangerous tree pests of the region has revealed them as neobiontic xylophilous insects such as Cossus cossus L. (Order: Lepidoptera L.) Monochamus urussovi Fisch., Monochamus sutor L., Acanthocinus aedelis L. and Ñetonia aureate L. (Order: Coleoptera L.). We relate the origin of this threatening trend with the import of industrial wood in the mid 90’s of the last century that was associated with high degree of the constructional work in the region. Because of the absence of efficient natural predators of the pest species, the application of microbiological methods of the pest control and limitation is suggested. Y1 - 2016 SN - 0972-3005 VL - 18 IS - 2 SP - 359 EP - 366 PB - EM International ER - TY - JOUR A1 - Peloni, Alessandro A1 - Ceriotti, Matteo A1 - Dachwald, Bernd T1 - Solar-sail trajectory design for a multiple near-earth-asteroid rendezvous mission JF - Journal of Guidance, Control, and Dynamics N2 - The scientific interest for near-Earth asteroids as well as the interest in potentially hazardous asteroids from the perspective of planetary defense led the space community to focus on near-Earth asteroid mission studies. A multiple near-Earth asteroid rendezvous mission with close-up observations of several objects can help to improve the characterization of these asteroids. This work explores the design of a solar-sail spacecraft for such a mission, focusing on the search of possible sequences of encounters and the trajectory optimization. This is done in two sequential steps: a sequence search by means of a simplified trajectory model and a set of heuristic rules based on astrodynamics, and a subsequent optimization phase. A shape-based approach for solar sailing has been developed and is used for the first phase. The effectiveness of the proposed approach is demonstrated through a fully optimized multiple near-Earth asteroid rendezvous mission. The results show that it is possible to visit five near-Earth asteroids within 10 years with near-term solar-sail technology. Y1 - 2016 U6 - http://dx.doi.org/10.2514/1.G000470 SN - 0731-5090 VL - 39 IS - 12 SP - 2712 EP - 2724 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Hackl, Michael A1 - Kahmann, Stephanie Lucina A1 - Wegmann, Kilian A1 - Ries, Christian A1 - Staat, Manfred A1 - Müller, Lars-Peter T1 - Shortening osteotomy of the proximal radius — a treatment option for isolated osteoarthritis of the lateral column of the elbow joint? JF - Knee surgery, sports traumatology, arthroscopy N2 - Treatment of posttraumatic osteoarthritis of the radial column of the elbow joint remains a challenging yet common issue. While partial joint replacement leads to high revision rates, radial head excision has shown to severely increase joint instability. Shortening osteotomy of the radius could be an option to decrease the contact pressure of the radiohumeral joint and thereby pain levels without causing valgus instability. Hence, the aim of this biomechanical study was to evaluate the effects of radial shortening on axial load distribution and valgus stability of the elbow joint. Y1 - 2016 U6 - http://dx.doi.org/10.1007/s00167-016-4080-7 SN - 0942-2056 VL - Volume 24 IS - Supplement 1 SP - 128 EP - 129 PB - Springer CY - Berlin ER - TY - JOUR A1 - Frotscher, Ralf A1 - Muanghong, Danita A1 - Dursun, Gözde A1 - Goßmann, Matthias A1 - Temiz Artmann, Aysegül A1 - Staat, Manfred T1 - Sample-specific adaption of an improved electro-mechanical model of in vitro cardiac tissue JF - Journal of Biomechanics N2 - We present an electromechanically coupled computational model for the investigation of a thin cardiac tissue construct consisting of human-induced pluripotent stem cell-derived atrial, ventricular and sinoatrial cardiomyocytes. The mechanical and electrophysiological parts of the finite element model, as well as their coupling are explained in detail. The model is implemented in the open source finite element code Code_Aster and is employed for the simulation of a thin circular membrane deflected by a monolayer of autonomously beating, circular, thin cardiac tissue. Two cardio-active drugs, S-Bay K8644 and veratridine, are applied in experiments and simulations and are investigated with respect to their chronotropic effects on the tissue. These results demonstrate the potential of coupled micro- and macroscopic electromechanical models of cardiac tissue to be adapted to experimental results at the cellular level. Further model improvements are discussed taking into account experimentally measurable quantities that can easily be extracted from the obtained experimental results. The goal is to estimate the potential to adapt the presented model to sample specific cell cultures. KW - hiPS cardiomyocytes KW - Homogenization KW - Hodgkin–Huxley models KW - Frequency adaption KW - Electromechanical modeling KW - Drug simulation KW - Computational biomechanics KW - Cardiac tissue Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.jbiomech.2016.01.039 SN - 0021-9290 (Print) SN - 1873-2380 (Online) VL - 49 IS - 12 SP - 2428 EP - 2435 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Albanna, W. A1 - Conzen, C. A1 - Weiss, M. A1 - Clusmann, H. A1 - Fuest, M. A1 - Mueller, M. A1 - Brockmann, M.A. A1 - Vilser, W. A1 - Schmidt-Trucksäss, A. A1 - Hoellig, A. A1 - Seiz, M. A1 - Thomé, C. A1 - Kotliar, Konstantin A1 - Schubert, G.A. T1 - Retinal Vessel Analysis (RVA) in the context of subarachnoid hemorrhage: A proof of concept study JF - PLoS ONE N2 - Background Timely detection of impending delayed cerebral ischemia after subarachnoid hemorrhage (SAH) is essential to improve outcome, but poses a diagnostic challenge. Retinal vessels as an embryological part of the intracranial vasculature are easily accessible for analysis and may hold the key to a new and non-invasive monitoring technique. This investigation aims to determine the feasibility of standardized retinal vessel analysis (RVA) in the context of SAH. Methods In a prospective pilot study, we performed RVA in six patients awake and cooperative with SAH in the acute phase (day 2–14) and eight patients at the time of follow-up (mean 4.6±1.7months after SAH), and included 33 age-matched healthy controls. Data was acquired using a manoeuvrable Dynamic Vessel Analyzer (Imedos Systems UG, Jena) for examination of retinal vessel dimension and neurovascular coupling. Results Image quality was satisfactory in the majority of cases (93.3%). In the acute phase after SAH, retinal arteries were significantly dilated when compared to the control group (124.2±4.3MU vs 110.9±11.4MU, p<0.01), a difference that persisted to a lesser extent in the later stage of the disease (122.7±17.2MU, p<0.05). Testing for neurovascular coupling showed a trend towards impaired primary vasodilation and secondary vasoconstriction (p = 0.08, p = 0.09 resp.) initially and partial recovery at the time of follow-up, indicating a relative improvement in a time-dependent fashion. Conclusion RVA is technically feasible in patients with SAH and can detect fluctuations in vessel diameter and autoregulation even in less severely affected patients. Preliminary data suggests potential for RVA as a new and non-invasive tool for advanced SAH monitoring, but clinical relevance and prognostic value will have to be determined in a larger cohort. Y1 - 2016 U6 - http://dx.doi.org/10.1371/journal.pone.0158781 SN - 1932-6203 VL - 11 IS - 7 PB - PLOS CY - San Francisco ER - TY - JOUR A1 - Hackl, Michael A1 - Leschinger, T. A1 - Staat, Manfred A1 - Müller, Lars-Peter A1 - Wegmann, Kilian T1 - Reconstruction of the interosseous membrane in the Essex Lopresti lesion — a biomechanical evaluation JF - Knee surgery, sports traumatology, arthroscopy N2 - Surgical reconstruction of the interosseous membrane (IOM) could restore longitudinal forearm stability to avoid persisting disability due to capituloradial and ulnocarpal impingement in Essex Lopresti lesions. This biomechanical study aimed to assess longitudinal forearm stability of intact specimens, after sectioning of the IOM and after reconstruction with a TightRope construct using either a single or double bundle technique. Y1 - 2016 U6 - http://dx.doi.org/10.1007/s00167-016-4080-7 SN - 0942-2056 VL - Volume 24 IS - Supplement 1 SP - 130 EP - 131 PB - Springer CY - Berlin ER - TY - JOUR A1 - Hackl, Michael A1 - Müller, Lars-Peter A1 - Staat, Manfred A1 - Kahmann, Stephanie Lucina A1 - Wegmann, Kilian T1 - Proximal phalangeal neck fractures of the hand — a biomechanical comparison of three fixation techniques JF - Knee surgery, sports traumatology, arthroscopy N2 - Plate osteosynthesis of displaced proximal phalangeal neck fractures of the hand allows early mobilization due to a stable internal fixation. Nevertheless, joint stiffness—because of soft tissue irritation—represents a common complication leading to high complication rates. Del Pinal et al. recently reported promising clinical results for a new, minimally invasive fixation technique with a cannulated headless intramedullary compression screw. Hence, the aim of this study was to compare plate fixation of proximal phalangeal neck fractures to less two less invasive techniques: Crossed k-wire fixation and intramedullary screw fixation. We hypothesized that these fixation techniques provide inferior stability when compared to plate osteosynthesis. Y1 - 2016 U6 - http://dx.doi.org/10.1007/s00167-016-4080-7 SN - 0942-2056 VL - Volume 24 IS - Supplement 1 SP - 148 EP - 149 PB - Springer CY - Berlin ER - TY - JOUR A1 - Kowalski, Julia A1 - Linder, Peter A1 - Zierke, S. A1 - Wulfen, B. van A1 - Clemens, J. A1 - Konstantinidis, K. A1 - Ameres, G. A1 - Hoffmann, R. A1 - Mikucki, J. A1 - Tulaczyk, S. A1 - Funke, O. A1 - Blandfort, D. A1 - Espe, Clemens A1 - Feldmann, Marco A1 - Francke, Gero A1 - Hiecker, S. A1 - Plescher, Engelbert A1 - Schöngarth, Sarah A1 - Dachwald, Bernd A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Eliseev, D. A1 - Heinen, D. A1 - Scholz, F. A1 - Wiebusch, C. A1 - Macht, S. A1 - Bestmann, U. A1 - Reineking, T. A1 - Zetzsche, C. A1 - Schill, K. A1 - Förstner, R. A1 - Niedermeier, H. A1 - Szumski, A. A1 - Eissfeller, B. A1 - Naumann, U. A1 - Helbing, K. T1 - Navigation technology for exploration of glacier ice with maneuverable melting probes JF - Cold Regions Science and Technology N2 - The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.coldregions.2015.11.006 SN - 0165-232X IS - 123 SP - 53 EP - 70 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Goßmann, Matthias A1 - Frotscher, Ralf A1 - Linder, Peter A1 - Bayer, Robin A1 - Epple, U. A1 - Staat, Manfred A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard T1 - Mechano-pharmacological characterization of cardiomyocytes derived from human induced pluripotent stem cells JF - Cellular physiology and biochemistry N2 - Background/Aims: Common systems for the quantification of cellular contraction rely on animal-based models, complex experimental setups or indirect approaches. The herein presented CellDrum technology for testing mechanical tension of cellular monolayers and thin tissue constructs has the potential to scale-up mechanical testing towards medium-throughput analyses. Using hiPS-Cardiac Myocytes (hiPS-CMs) it represents a new perspective of drug testing and brings us closer to personalized drug medication. Methods: In the present study, monolayers of self-beating hiPS-CMs were grown on ultra-thin circular silicone membranes and deflect under the weight of the culture medium. Rhythmic contractions of the hiPS-CMs induced variations of the membrane deflection. The recorded contraction-relaxation-cycles were analyzed with respect to their amplitudes, durations, time integrals and frequencies. Besides unstimulated force and tensile stress, we investigated the effects of agonists and antagonists acting on Ca²⁺ channels (S-Bay K8644/verapamil) and Na⁺ channels (veratridine/lidocaine). Results: The measured data and simulations for pharmacologically unstimulated contraction resembled findings in native human heart tissue, while the pharmacological dose-response curves were highly accurate and consistent with reference data. Conclusion: We conclude that the combination of the CellDrum with hiPS-CMs offers a fast, facile and precise system for pharmacological, toxicological studies and offers new preclinical basic research potential. KW - Inotropic compounds KW - Pharmacology KW - Ion channels KW - CellDrum KW - Heart tissue culture KW - Induced pluripotent stem cells KW - Cardiac myocytes Y1 - 2016 U6 - http://dx.doi.org/10.1159/000443124 SN - 1421-9778 (Online) SN - 1015-8987 (Print) VL - 38 IS - 3 SP - 1182 EP - 1198 PB - Karger CY - Basel ER - TY - JOUR A1 - Kolditz, Melanie A1 - Albin, Thivaharan A1 - Abel, Dirk A1 - Fasse, Alessandro A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Evaluation of foot position and orientation as manipulated variables to control external knee adduction moments in leg extension training JF - Computer methods and programs in biomedicine N2 - Background and Objective Effective leg extension training at a leg press requires high forces, which need to be controlled to avoid training-induced damage. In order to avoid high external knee adduction moments, which are one reason for unphysiological loadings on knee joint structures, both training movements and the whole reaction force vector need to be observed. In this study, the applicability of lateral and medial changes in foot orientation and position as possible manipulated variables to control external knee adduction moments is investigated. As secondary parameters both the medio-lateral position of the center of pressure and the frontal-plane orientation of the reaction force vector are analyzed. Methods Knee adduction moments are estimated using a dynamic model of the musculoskeletal system together with the measured reaction force vector and the motion of the subject by solving the inverse kinematic and dynamic problem. Six different foot conditions with varying positions and orientations of the foot in a static leg press are evaluated and compared to a neutral foot position. Results Both lateral and medial wedges under the foot and medial and lateral shifts of the foot can influence external knee adduction moments in the presented study with six healthy subjects. Different effects are observed with the varying conditions: the pose of the leg is changed and the direction and center of pressure of the reaction force vector is influenced. Each effect results in a different direction or center of pressure of the reaction force vector. Conclusions The results allow the conclusion that foot position and orientation can be used as manipulated variables in a control loop to actively control knee adduction moments in leg extension training. KW - External knee adduction moments KW - Manipulated variables KW - Inverse dynamic problem KW - Inverse kinematic problem KW - Musculoskeletal model Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.cmpb.2016.09.005 SN - 0169-2607 N1 - Part of special issue: "SI: Personalised Models and System Identification" VL - 171 SP - 81 EP - 86 PB - Elsevier CY - Amsterdam ER -