TY - CHAP A1 - Böhm, Stefan A1 - Hellmanns, Mark A1 - Backes, Andreas A1 - Dilger, Klaus T1 - Lock-in thermography based NDT of automotive parts T2 - Proceedings of the 3rd World Congress on Adhesion and Related Phenomena : WCARP-III, October 15 -18, 2006, Beijing, China Y1 - 2006 SP - 382 EP - 384 PB - Beijing Adhesion Society of China CY - Beijing ER - TY - CHAP A1 - Kern, Alexander A1 - Krichel, Frank A1 - Müller, Klaus-Peter T1 - Lightning protection design of a renewable energy hybrid-system without power mains connection N2 - In the year 2000 a direct lightning strike to the hybridsystem without power mains connection VATALI on the Greek island Crete results in the destruction and damage of some mechanical and electrical components. The hybrid-system VATALI was not lightning protected at that time. The hardware damage costs are approx. 60,000 €. The exposed site of the hybrid-system on top of a mountain was and still is the reason for a high risk of lightning strikes. Also in the future further lightning strikes have to be taken into consideration. In the paper a fundamental lightning protection design concept for renewable energy hybrid-systems without power mains connection and protection measures against direct strikes and overvoltages are shown in detail. The design concept was realized exemplarily for the hybrid-system VATALI. The hardware costs for the protection measures were about 15,000 €. About 50% of the costs are due to protection measures against direct strikes, 50% are due to overvoltage protection. Future extensions, new installations, or modifications have to be included into the lightning protection design concept of the hybrid-system. KW - Blitzschutz KW - Erneuerbare Energien KW - Hybridsystem KW - Lightning protection KW - Renewable energy KW - hybrid-system Y1 - 2001 ER - TY - CHAP A1 - Pieper, Martin T1 - Lernzielorientierte Kurse und Stack Aufgaben in der Mathematikausbildung T2 - Beiträge zum Mathematikunterricht 2018 : Vorträge zur Mathematikdidaktik und zur Schnittstelle Mathematik/Mathematikdidaktik auf der gemeinsamen Jahrestagung GDM und DMV 2018 (52. Jahrestagung der Gesellschaft für Didaktik der Mathematik). Bd. 3 Y1 - 2018 SN - 978-3-95987-089-4 SP - 1399 EP - 1402 PB - WTM-Verlag CY - Münster ER - TY - CHAP A1 - Zischank, Wolfgang J. A1 - Heidler, Fridolin A1 - Kern, Alexander A1 - Metwally, I. A. A1 - Wiesinger, J. A1 - Seevers, M. T1 - Laboratory simulation of direct lightning strokes to a modelled building - measurement of magnetic fields and induced voltages N2 - In IEC 61312-2 equations for the assessment of the magnetic fields inside structures due to a direct lightning strike are given. These equations are based on computer simulations for shields consisting of a single-layer steel grid of a given mesh width. Real constructions, however, contain at least two layers of reinforcement steel grids. The objective of this study was to experimentally determine the additional shielding effectiveness of a second reinforcement layer compared to a single-layer grid. To this end, simulated structures were set up in the high current laboratory. The structures consisted of cubic cages of 2 m side length with one or with two reinforcement grids, respectively. The structures were exposed to direct lightning currents representing the variety of anticipated lightning current waveforms. The magnetic fields and their derivatives at several positions inside the structure as well as the voltage between “floor” and “roof” in the center were determined for different current injection points. From these data the improvement of the shielding caused by a second reinforcement layer is derived. KW - Direkter Blitzschlag KW - Elektromagnetischer Schutzschild KW - Magnetische Felder KW - Induzierte Spannungen KW - Stahlbetonkonstruktion KW - Lightning KW - electromagnetic shielding KW - magnetic field KW - reinforced concrete KW - induced voltage Y1 - 2002 ER - TY - CHAP A1 - Werner, Frederik A1 - Mansour, Ahmed A1 - Rateike, Franz-Matthias A1 - Schusser, Sebastian A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Keusgen, Michael A1 - Schöning, Michael Josef ED - Gerlach, Gerald T1 - Kompakter Aufbau eines lichtadressierbaren potentiometrischen Sensors mit verfahrbarem Diodenlaser T2 - 10. Dresdner Sensor-Symposium : Dresden, 5. - 7. Dezember 2011 ; miniaturisierte analytische Verfahren, Hochtemperatur-Sensoren, Sensoren für Bioprozess- und Verfahrenstechnik, Sensoren für die Medizin, Chemische Verfahrenstechnik, Lebensmittelanalytik, innovative Sensorlösungen, Sensoren für die Wasserqualität, Selbstüberwachung / Gerald Gerlach ... (Hg.) Dresdner Beiträge zur Sensorik. 43 Y1 - 2011 SN - 978-3-942710-53-4 SP - 277 EP - 280 PB - TUDpress CY - Dresden ER - TY - CHAP A1 - Markinkovic, Marko A1 - Butenweg, Christoph A1 - Pavese, A. A1 - Lanese, I. A1 - Hoffmeister, B. A1 - Pinkawa, M. A1 - Vulcu, C. A1 - Bursi, O. A1 - Nardin, C. A1 - Paolacci, F. A1 - Quinci, G. A1 - Fragiadakis, M. A1 - Weber, F. A1 - Huber, P. A1 - Renault, P. A1 - Gündel, M. A1 - Dyke, S. A1 - Ciucci, M. A1 - Marino, A. T1 - Investigation of the seismic behaviour of structural and nonstructural components in industrial facilities by means of shaking table tests T2 - Seismic design of industrial facilities 2020: proceedings of the 2nd International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) Y1 - 2020 SN - 978-3-86359-729-0 SP - 159 EP - 172 ER - TY - CHAP A1 - Kubalski, T. A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Klinkel, S. T1 - Investigation Of The Seismic Behaviour Of Infill Masonry Using Numerical Modelling Approaches T2 - 16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 N2 - Masonry is a widely spread construction type which is used all over the world for different types of structures. Due to its simple and cheap construction, it is used as non-structural as well as structural element. In frame structures, such as reinforced concrete frames, masonry may be used as infill. While the bare frame itself is able to carry the loads when it comes to seismic events, the infilled frame is not able to warp freely due to the constrained movement. This restraint results in a complex interaction between the infill and the surrounding frame, which may lead to severe damage to the infill as well as the surrounding frame. The interaction is studied in different projects and effective approaches for the description of the behavior are still lacking. Experimental programs are usually quite expensive, while numerical models, once validated, do offer an efficient approach for the investigation of the interaction when horizontally loaded. In order to study the numerous parameters influencing the seismic load bearing behavior, numerical models may be used. Therefore, this contribution presents a numerical approach for the simulation of infill masonry in reinforced concrete frames. Both parts, the surrounding frame as well as the infill are represented by micro modelling approaches to correctly take into account the different types of failure. The adopted numerical model describes the inelastic behavior of the system, as indicated by the obtained results of the overall structural response as well as the formation of damage in the infilled wall. Comparison of the numerical and experimental results highlights the valuable contribution of numerical simulations in the study and design of infilled frames. As damage of the infill masonry may occur in-plane due to the interaction as well as out-of-plane due to the low vertical load, both directions of loading are investigated. Y1 - 2017 N1 - Paper No 3064 SP - 1 EP - 11 PB - Chilean Association on Seismology and Earthquake Engineering (ACHISINA) ER - TY - CHAP A1 - Riga, Evi A1 - Pitilakis, Kyriazis A1 - Butenweg, Christoph A1 - Apostolaki, Stefania A1 - Karatzetzou, Anna ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Investigating the impact of the new European Seismic Hazard Model ESHM20 on the seismic design and safety control of industrial facilities T2 - The Third European Conference on Earthquake Engineering and Seismology September 4 – September 9, 2022, Bucharest N2 - The seismic performance and safety of major European industrial facilities has a global interest for Europe, its citizens and economy. A potential major disaster at an industrial site could affect several countries, probably far beyond the country where it is located. However, the seismic design and safety assessment of these facilities is practically based on national, often outdated seismic hazard assessment studies, due to many reasons, including the absence of a reliable, commonly developed seismic hazard model for whole Europe. This important gap is no more existing, as the 2020 European Seismic Hazard Model ESHM20 was released in December 2021. In this paper we investigate the expected impact of the adoption of ESHM20 on the seismic demand for industrial facilities, through the comparison of the ESHM20 probabilistic hazard at the sites where industrial facilities are located with the respective national and European regulations. The goal of this preliminary work in the framework of Working Group 13 of the European Association for Earthquake Engineering (EAEE), is to identify potential inadequacies in the design and safety control of existing industrial facilities and to highlight the expected impact of the adoption of the new European Seismic Hazard Model on the design of new industrial facilities and the safety assessment of existing ones. KW - ESHM20, industrial facilities KW - seismic hazard KW - seismic design KW - safety control Y1 - 2022 SN - 978-973-100-533-1 SP - 3261 EP - 3270 ER - TY - CHAP A1 - Niederwestberg, Stefan A1 - Schneider, Falko A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Introduction to a direct irradiated transparent tube particle receiver T2 - SOLARPACES 2020 N2 - New materials often lead to innovations and advantages in technical applications. This also applies to the particle receiver proposed in this work that deploys high-temperature and scratch resistant transparent ceramics. With this receiver design, particles are heated through direct-contact concentrated solar irradiance while flowing downwards through tubular transparent ceramics from top to bottom. In this paper, the developed particle receiver as well as advantages and disadvantages are described. Investigations on the particle heat-up characteristics from solar irradiance were carried out with DEM simulations which indicate that particle temperatures can reach up to 1200 K. Additionally, a simulation model was set up for investigating the dynamic behavior. A test receiver at laboratory scale has been designed and is currently being built. In upcoming tests, the receiver test rig will be used to validate the simulation results. The design and the measurement equipment is described in this work. KW - Solar irradiance KW - Ceramics Y1 - 2022 SN - 978-0-7354-4195-8 U6 - http://dx.doi.org/10.1063/5.0086735 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September–2 October 2020 Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Müller-Abdelrazeq, Sarah Luisa A1 - Brauner, Philipp A1 - Calero Valdez, André A1 - Jansen, Ulrich A1 - Platte, Laura A1 - Schaar, Anne-Kathrin A1 - Steuer-Dankert, Linda A1 - Zachow, Sebastian A1 - Schönefeld, Kathrin A1 - Haberstroh, Max A1 - Leicht-Scholten, Carmen A1 - Ziefle, Martina ED - Pather, Shaun T1 - Interdisciplinary cooperation management in research clusters: a review of twelve years. T2 - Proceedings of the 15th International Conference on Intellectual Capital, Knowledge Management & Organisational Learning N2 - As an interdisciplinary research network, the Cluster of Excellence “Integrative Production Technology for High-Wage Countries” (CoE) comprises of around 150 researchers. Their scientific background ranges from mechanical engineering and computer science to social sciences such as sociology and psychology. In addition to content- and methodbased challenges, the CoE’s employees are faced with heterogenic organizational cultures, different hierarchical levels, an imbalanced gender distribution, and a high employee fluctuation. The sub-project Scientific Cooperation Engineering 1 (CSP1) addresses the challenge of interdisciplinary cooperation and organizational learning and aims at fostering interdisciplinarity and its synergies as a source of innovation. Therefore, the project examines means of reaching an organizational development, ranging from temporal structures to a sustainable network in production technology. To achieve this aim, a broad range of means has been developed during the last twelve years: In addition to physical measures such as regular network events and trainings, virtual measures such as the Terminology App were focused. The app is an algorithmic analysis method for uncovering latent topic structures of publications of the CoE to highlight thematic intersections and synergy potentials. The detection and promotion of has been a vital and long known element in knowledge management. Furthermore, CSP1 focusses on project management and thus developed evaluation tools to measure and control the success of interdisciplinary cooperation. In addition to the cooperation fostering measures, CSP1 conducted studies about interdisciplinarity and diversity and their relationship with innovation. The scientific background of these means and the research results of CSP1 are outlined in this paper to offer approaches for successful interdisciplinary cooperation management. Y1 - 2018 SN - 978-1-912764-09-9 N1 - hosted by University of the Western Cape, South Africa 29-30 November 2018 SP - 216 EP - 224 PB - ACPIL ER -