TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Aerodynamic Investigations of UAV Sensor Turrets - A Combined Wind-tunnel and CFD Approach JF - SciTech 2021, AIAA SciTech Forum, online, WW, Jan 11-15, 2021 Y1 - 2021 U6 - https://doi.org/10.2514/6.2021-1535 SP - 1 EP - 12 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Hugenroth, Kristin A1 - Neidlin, Michael A1 - Engelmann, Ulrich M. A1 - Kaufmann, Tim A. S. A1 - Steinseifer, Ulrich A1 - Heilmann, Torsten T1 - Tipless Transseptal Cannula Concept Combines Improved Hemodynamic Properties and Risk‐Reduced Placement: an In Silico Proof‐of‐Concept JF - Artificial Organs Y1 - 2021 U6 - https://doi.org/10.1111/aor.13964 SN - 1525-1594 IS - Accepted Article PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Jablonski, Melanie A1 - Poghossian, Arshak A1 - Severin, Robin A1 - Keusgen, Michael A1 - Wege, Christian A1 - Schöning, Michael Josef T1 - Capacitive Field-Effect Biosensor Studying Adsorption of Tobacco Mosaic Virus Particles JF - Micromachines N2 - Plant virus-like particles, and in particular, tobacco mosaic virus (TMV) particles, are increasingly being used in nano- and biotechnology as well as for biochemical sensing purposes as nanoscaffolds for the high-density immobilization of receptor molecules. The sensitive parameters of TMV-assisted biosensors depend, among others, on the density of adsorbed TMV particles on the sensor surface, which is affected by both the adsorption conditions and surface properties of the sensor. In this work, Ta₂O₅-gate field-effect capacitive sensors have been applied for the label-free electrical detection of TMV adsorption. The impact of the TMV concentration on both the sensor signal and the density of TMV particles adsorbed onto the Ta₂O₅-gate surface has been studied systematically by means of field-effect and scanning electron microscopy methods. In addition, the surface density of TMV particles loaded under different incubation times has been investigated. Finally, the field-effect sensor also demonstrates the label-free detection of penicillinase immobilization as model bioreceptor on TMV particles. KW - capacitive field-effect sensor KW - plant virus detection KW - tobacco mosaic virus (TMV) KW - TMV adsorption KW - Ta₂O₅ gate Y1 - 2021 U6 - https://doi.org/10.3390/mi12010057 VL - 12 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Erpicum, Sebastien A1 - Crookston, Brian M. A1 - Bombardelli, Fabian A1 - Bung, Daniel Bernhard A1 - Felder, Stefan A1 - Mulligan, Sean A1 - Oertel, Mario A1 - Palermo, Michele T1 - Hydraulic structures engineering: An evolving science in a changing world JF - Wires Water Y1 - 2021 U6 - https://doi.org/10.1002/wat2.1505 SN - 2049-1948 VL - 8 IS - 2 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Givanoudi, Stella A1 - Cornelis, Peter A1 - Rasschaert, Geertrui A1 - Wackers, Gideon A1 - Iken, Heiko A1 - Rolka, David A1 - Yongabi, Derick A1 - Robbens, Johan A1 - Schöning, Michael Josef A1 - Heyndrickx, Marc A1 - Wagner, Patrick T1 - Selective Campylobacter detection and quantification in poultry: A sensor tool for detecting the cause of a common zoonosis at its source JF - Sensors and Actuators B: Chemical Y1 - 2021 U6 - https://doi.org/10.1016/j.snb.2021.129484 SN - 0925-4005 IS - In Press, Journal Pre-proof SP - Article 129484 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Heuermann, Holger A1 - Harzheim, Thomas A1 - Cronenbroeck, Tobias T1 - First SIMO harmonic radar based on the SFCW concept and the HR transfer function JF - Remote sensing N2 - This paper presents a new SIMO radar system based on a harmonic radar (HR) stepped frequency continuous wave (SFCW) architecture. Simple tags that can be electronically individually activated and deactivated via a DC control voltage were developed and combined to form an MO array field. This HR operates in the entire 2.45 GHz ISM band for transmitting the illumination signal and receives at twice the stimulus frequency and bandwidth centered around 4.9 GHz. This paper presents the development, the basic theory of a HR system for the characterization of objects placed into the propagation path in-between the radar and the reflectors (similar to a free-space measurement with a network analyzer) as well as first measurements performed by the system. Further detailed measurement series will be made available later on to other researchers to develop AI and machine learning based signal processing routines or synthetic aperture radar algorithms for imaging, object recognition, and feature extraction. For this purpose, the necessary information is published in this paper. It is explained in detail why this SIMO-HR can be an attractive solution augmenting or replacing existing systems for radar measurements in production technology for material under test measurements and as a simplified MIMO system. The novel HR transfer function, which is a basis for researchers and developers for material characterization or imaging algorithms, is introduced and metrologically verified in a well traceable coaxial setup. KW - MUT measurement; scanner KW - transponder KW - SFCW KW - harmonic radar KW - nonlinear radar Y1 - 2021 U6 - https://doi.org/10.3390/rs13245088 SN - 2072-4292 N1 - This article belongs to the Special Issue "Nonlinear Junction Detection and Harmonic Radar" VL - 13 IS - 24 PB - MDPI CY - Basel ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Sherelkhan, Dinara K. A1 - Jussupova, Dariya B. A1 - Altynbay, Nazym P. T1 - Low-rank coal as a source of humic substances for soil amendment and fertility management JF - Agriculture N2 - Humic substances (HS), as important environmental components, are essential to soil health and agricultural sustainability. The usage of low-rank coal (LRC) for energy generation has declined considerably due to the growing popularity of renewable energy sources and gas. However, their potential as soil amendment aimed to maintain soil quality and productivity deserves more recognition. LRC, a highly heterogeneous material in nature, contains large quantities of HS and may effectively help to restore the physicochemical, biological, and ecological functionality of soil. Multiple emerging studies support the view that LRC and its derivatives can positively impact the soil microclimate, nutrient status, and organic matter turnover. Moreover, the phytotoxic effects of some pollutants can be reduced by subsequent LRC application. Broad geographical availability, relatively low cost, and good technical applicability of LRC offer the advantage of easy fulfilling soil amendment and conditioner requirements worldwide. This review analyzes and emphasizes the potential of LRC and its numerous forms/combinations for soil amelioration and crop production. A great benefit would be a systematic investment strategy implicating safe utilization and long-term application of LRC for sustainable agricultural production. KW - soil remediation KW - crop yield KW - soil health KW - soil amendment KW - low-rank coal Y1 - 2021 U6 - https://doi.org/10.3390/agriculture11121261 SN - 2077-0472 N1 - This article belongs to the Special Issue "From Waste to Fertilizer in Sustainable Agriculture" VL - 11 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Poghossian, Arshak A1 - Welden, Rene A1 - Buniatyan, Vahe V. A1 - Schöning, Michael Josef T1 - An Array of On-Chip Integrated, Individually Addressable Capacitive Field-Effect Sensors with Control Gate: Design and Modelling JF - Sensors N2 - The on-chip integration of multiple biochemical sensors based on field-effect electrolyte-insulator-semiconductor capacitors (EISCAP) is challenging due to technological difficulties in realization of electrically isolated EISCAPs on the same Si chip. In this work, we present a new simple design for an array of on-chip integrated, individually electrically addressable EISCAPs with an additional control gate (CG-EISCAP). The existence of the CG enables an addressable activation or deactivation of on-chip integrated individual CG-EISCAPs by simple electrical switching the CG of each sensor in various setups, and makes the new design capable for multianalyte detection without cross-talk effects between the sensors in the array. The new designed CG-EISCAP chip was modelled in so-called floating/short-circuited and floating/capacitively-coupled setups, and the corresponding electrical equivalent circuits were developed. In addition, the capacitance-voltage curves of the CG-EISCAP chip in different setups were simulated and compared with that of a single EISCAP sensor. Moreover, the sensitivity of the CG-EISCAP chip to surface potential changes induced by biochemical reactions was simulated and an impact of different parameters, such as gate voltage, insulator thickness and doping concentration in Si, on the sensitivity has been discussed. KW - equivalent circuit KW - multianalyte detection KW - control gate KW - on-chip integrated addressable EISCAP sensors KW - capacitive field-effect sensor Y1 - 2021 U6 - https://doi.org/10.3390/s21186161 SN - 1424-8220 N1 - This article belongs to the Special Issue "Field-Effect Sensors: From pH Sensing to Biosensing" VL - 21 IS - 18 SP - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Pourshahidi, Ali Mohammad A1 - Achtsnicht, Stefan A1 - Nambipareechee, Mrinal Murali A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim T1 - Multiplex detection of magnetic beads using offset field dependent frequency mixing magnetic detection JF - Sensors N2 - Magnetic immunoassays employing Frequency Mixing Magnetic Detection (FMMD) have recently become increasingly popular for quantitative detection of various analytes. Simultaneous analysis of a sample for two or more targets is desirable in order to reduce the sample amount, save consumables, and save time. We show that different types of magnetic beads can be distinguished according to their frequency mixing response to a two-frequency magnetic excitation at different static magnetic offset fields. We recorded the offset field dependent FMMD response of two different particle types at frequencies ƒ₁ + n⋅ƒ₂, n = 1, 2, 3, 4 with ƒ₁ = 30.8 kHz and ƒ₂ = 63 Hz. Their signals were clearly distinguishable by the locations of the extremes and zeros of their responses. Binary mixtures of the two particle types were prepared with different mixing ratios. The mixture samples were analyzed by determining the best linear combination of the two pure constituents that best resembled the measured signals of the mixtures. Using a quadratic programming algorithm, the mixing ratios could be determined with an accuracy of greater than 14%. If each particle type is functionalized with a different antibody, multiplex detection of two different analytes becomes feasible. KW - colorization KW - multiplex detection KW - frequency mixing magnetic detection KW - magnetic nanoparticles Y1 - 2021 U6 - https://doi.org/10.3390/s21175859 SN - 1424-8220 N1 - This article belongs to the Special Issue "Advanced Nanomaterial-Based Sensors for Biomedical Applications" VL - 21 IS - 17 PB - MDPI CY - Basel ER - TY - JOUR A1 - Butenweg, Christoph A1 - Bursi, Oreste S. A1 - Paolacci, Fabrizio A1 - Marinković, Marko A1 - Lanese, Igor A1 - Nardin, Chiara A1 - Quinci, Gianluca ED - Yang, J. T1 - Seismic performance of an industrial multi-storey frame structure with process equipment subjected to shake table testing JF - Engineering Structures N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of process equipment and multiple and simultaneous release of hazardous substances. Nonetheless, current standards for seismic design of industrial facilities are considered inadequate to guarantee proper safety conditions against exceptional events entailing loss of containment and related consequences. On these premises, the SPIF project -Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities- was proposed within the framework of the European H2020 SERA funding scheme. In detail, the objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial multi-storey frame structure equipped with complex process components by means of shaking table tests. Along this main vein and in a performance-based design perspective, the issues investigated in depth are the interaction between a primary moment resisting frame (MRF) steel structure and secondary process components that influence the performance of the whole system; and a proper check of floor spectra predictions. The evaluation of experimental data clearly shows a favourable performance of the MRF structure, some weaknesses of local details due to the interaction between floor crossbeams and process components and, finally, the overconservatism of current design standards w.r.t. floor spectra predictions. KW - Multi-storey KW - Frame structure KW - Earthquake KW - Tank KW - Piping Y1 - 2021 U6 - https://doi.org/10.1016/j.engstruct.2021.112681 SN - 0141-0296 VL - 243 IS - 15 PB - Elsevier CY - Amsterdam ER -