TY - CHAP A1 - Kuhlen, Max A1 - Digel, Ilya ED - Erni, Daniel ED - Fischerauer, Alice ED - Himmel, Jörg ED - Seeger, Thomas ED - Thelen, Klaus T1 - Fluorescence signatures and detection limits of ubiquitous terrestrial bio-compounds T2 - 2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West Y1 - 2017 SN - 978-3-9814801-9-1 U6 - https://doi.org/10.17185/duepublico/43984 N1 - A young researchers track of the 7th IEEE Workshop & SENSORICA 2017 SP - 102 EP - 103 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - de Honde, Lukas A1 - Porst, Dariusz A1 - Digel, Ilya ED - Fischerauer, Alice T1 - A randomized, observational thermographic study of the neck region before and after a physiotherapeutic intervention T2 - 2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West Y1 - 2017 SN - 978-3-9814801-9-1 U6 - https://doi.org/10.17185/duepublico/43984 N1 - A young researchers track of the 7th IEEE Workshop & SENSORICA 2017 SP - 122 EP - 123 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Abel, Alexander A1 - Pérez-Viana, Daniel A1 - Ciritsis, Bernard A1 - Staat, Manfred ED - Erni, Daniel ED - Fischerauer, Alice ED - Himmel, Jörg ED - Seeger, Thomas ED - Thelen, Klaus T1 - Prevention of femur neck fractures through femoroplasty T2 - 2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West Y1 - 2017 SN - 978-3-9814801-9-1 U6 - https://doi.org/10.17185/duepublico/43984 N1 - A young researchers track of the 7th IEEE Workshop & SENSORICA 2017 SP - 114 EP - 115 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Suryoputri, Nathania A1 - Ghaderi, Aydin A1 - Linder, Peter A1 - Kotliar, Konstantin A1 - Göttler, Jens A1 - Sorg, Christian A1 - Grimmer, Timo ED - Erni, Daniel ED - Fischerauer, Alice ED - Himmel, Jörg ED - Seeger, Thomas ED - Thelen, Klaus T1 - Does hemodynamic response function change in Alzheimer disease? T2 - 2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West Y1 - 2017 SN - 978-3-9814801-9-1 U6 - https://doi.org/10.17185/duepublico/43984 N1 - A young researchers track of the 7th IEEE Workshop & SENSORICA 2017 SP - 92 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Schlemmer, Katharina A1 - Porst, Dariusz A1 - Bassam, Rasha A1 - Artmann, Gerhard A1 - Digel, Ilya ED - Erni, Daniel ED - Fischerauer, Alice ED - Himmel, Jörg ED - Seeger, Thomas ED - Thelen, Klaus T1 - Effects of nitric oxide (NO) and ATP on red blood cell phenotype and deformability T2 - 2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West Y1 - 2017 SN - 978-3-9814801-9-1 U6 - https://doi.org/10.17185/duepublico/43984 N1 - A young researchers track of the 7th IEEE Workshop & SENSORICA 2017 SP - 100 EP - 101 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Carzana, Livio A1 - Dachwald, Bernd A1 - Noomen, Ron T1 - Model and trajectory optimization for an ideal laser-enhanced solar sail T2 - 68th International Astronautical Congress N2 - A laser-enhanced solar sail is a solar sail that is not solely propelled by solar radiation but additionally by a laser beam that illuminates the sail. This way, the propulsive acceleration of the sail results from the combined action of the solar and the laser radiation pressure onto the sail. The potential source of the laser beam is a laser satellite that coverts solar power (in the inner solar system) or nuclear power (in the outer solar system) into laser power. Such a laser satellite (or many of them) can orbit anywhere in the solar system and its optimal orbit (or their optimal orbits) for a given mission is a subject for future research. This contribution provides the model for an ideal laser-enhanced solar sail and investigates how a laser can enhance the thrusting capability of such a sail. The term ”ideal” means that the solar sail is assumed to be perfectly reflecting and that the laser beam is assumed to have a constant areal power density over the whole sail area. Since a laser beam has a limited divergence, it can provide radiation pressure at much larger solar distances and increase the radiation pressure force into the desired direction. Therefore, laser-enhanced solar sails may make missions feasible, that would otherwise have prohibitively long flight times, e.g. rendezvous missions in the outer solar system. This contribution will also analyze exemplary mission scenarios and present optimial trajectories without laying too much emphasis on the design and operations of the laser satellites. If the mission studies conclude that laser-enhanced solar sails would have advantages with respect to ”traditional” solar sails, a detailed study of the laser satellites and the whole system architecture would be the second next step Y1 - 2017 N1 - 68th International Astronautical Congress: Unlocking Imagination, Fostering Innovation and Strengthening Security, IAC 2017, 2017-09-25 → 2017-09-29, Adelaide, Australia ER - TY - CHAP A1 - Schneider, Oliver A1 - Al Hakim, Taher A1 - Kayser, Peter A1 - Digel, Ilya ED - Erni, Daniel ED - Fischerauer, Alice ED - Himmel, Jörg ED - Seeger, Thomas ED - Thelen, Klaus T1 - Development and trials of a test chamber for ultrasound-assisted sampling of living cells from solid surfaces T2 - 2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West Y1 - 2017 SN - 978-3-9814801-9-1 U6 - https://doi.org/10.17185/duepublico/43984 N1 - A young researchers track of the 7th IEEE Workshop & SENSORICA 2017 SP - 96 EP - 97 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Birgel, Stefan A1 - Leschinger, Tim A1 - Wegmann, Kilian A1 - Staat, Manfred ED - Erni, Daniel ED - Fischerauer, Alice ED - Himmel, Jörg ED - Seeger, Thomas ED - Thelen, Klaus T1 - Calculation of muscle forces and joint reaction loads in shoulder area via an OpenSim based computer calculation T2 - 2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West Y1 - 2017 SN - 978-3-9814801-9-1 U6 - https://doi.org/10.17185/duepublico/43984 N1 - A young researchers track of the 7th IEEE Workshop & SENSORICA 2017 N1 - In der Druckausgabe des Abstractbandes ist dieser Beitrag lose als Erratum beigefügt. SP - 116 EP - 117 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Baader, Fabian A1 - Reiswich, M. A1 - Bartsch, M. A1 - Keller, D. A1 - Tiede, E. A1 - Keck, G. A1 - Demircian, A. A1 - Friedrich, M. A1 - Dachwald, Bernd A1 - Schüller, K. A1 - Lehmann, R. A1 - Chojetzki, R. A1 - Durand, C. A1 - Rapp, L. A1 - Kowalski, Julia A1 - Förstner, R. T1 - VIPER - Student research on extraterrestrical ice penetration technology T2 - Proceedings of the 2nd Symposium on Space Educational Activities N2 - Recent analysis of scientific data from Cassini and earth-based observations gave evidence for a global ocean under a surrounding solid ice shell on Saturn's moon Enceladus. Images of Enceladus' South Pole showed several fissures in the ice shell with plumes constantly exhausting frozen water particles, building up the E-Ring, one of the outer rings of Saturn. In this southern region of Enceladus, the ice shell is considered to be as thin as 2 km, about an order of magnitude thinner than on the rest of the moon. Under the ice shell, there is a global ocean consisting of liquid water. Scientists are discussing different approaches the possibilities of taking samples of water, i.e. by melting through the ice using a melting probe. FH Aachen UAS developed a prototype of maneuverable melting probe which can navigate through the ice that has already been tested successfully in a terrestrial environment. This means no atmosphere and or ambient pressure, low ice temperatures of around 100 to 150K (near the South Pole) and a very low gravity of 0,114 m/s^2 or 1100 μg. Two of these influencing measures are about to be investigated at FH Aachen UAS in 2017, low ice temperature and low ambient pressure below the triple point of water. Low gravity cannot be easily simulated inside a large experiment chamber, though. Numerical simulations of the melting process at RWTH Aachen however are showing a gravity dependence of melting behavior. Considering this aspect, VIPER provides a link between large-scale experimental simulations at FH Aachen UAS and numerical simulations at RWTH Aachen. To analyze the melting process, about 90 seconds of experiment time in reduced gravity and low ambient pressure is provided by the REXUS rocket. In this time frame, the melting speed and contact force between ice and probes are measured, as well as heating power and a two-dimensional array of ice temperatures. Additionally, visual and infrared cameras are used to observe the melting process. Y1 - 2018 SP - 1 EP - 6 ER - TY - CHAP A1 - Bhattarai, Aroj A1 - Staat, Manfred ED - Fernandes, P.R. ED - Tavares, J. M. T1 - Pectopexy to repair vaginal vault prolapse: a finite element approach T2 - Proceedings CMBBE 2018 N2 - The vaginal prolapse after hysterectomy (removal of the uterus) is often associated with the prolapse of the vaginal vault, rectum, bladder, urethra or small bowel. Minimally invasive surgery such as laparoscopic sacrocolpopexy and pectopexy are widely performed for the treatment of the vaginal prolapse with weakly supported vaginal vault after hysterectomy using prosthetic mesh implants to support (or strengthen) lax apical ligaments. Implants of different shape, size and polymers are selected depending on the patient’s anatomy and the surgeon’s preference. In this computational study on pectopexy, DynaMesh®-PRP soft, GYNECARE GYNEMESH® PS Nonabsorbable PROLENE® soft and Ultrapro® are tested in a 3D finite element model of the female pelvic floor. The mesh model is implanted into the extraperitoneal space and sutured to the vaginal stump with a bilateral fixation to the iliopectineal ligament at both sides. Numerical simulations are conducted at rest, after surgery and during Valsalva maneuver with weakened tissues modeled by reduced tissue stiffness. Tissues and prosthetic meshes are modeled as incompressible, isotropic hyperelastic materials. The positions of the organs are calculated with respect to the pubococcygeal line (PCL) for female pelvic floor at rest, after repair and during Valsalva maneuver using the three meshes. Y1 - 2018 N1 - 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization. CMBBE 2018. 26-29 March 2018, Lisbon, Portugal ER -