TY - CHAP A1 - Alhwarin, Faraj A1 - Ferrein, Alexander A1 - Scholl, Ingrid T1 - CRVM: Circular Random Variable-based Matcher - A Novel Hashing Method for Fast NN Search in High-dimensional Spaces T2 - Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods, ICPRAM 2018 Y1 - 2018 SN - 978-989-758-276-9 U6 - https://doi.org/10.5220/0006692802140221 SP - 214 EP - 221 ER - TY - CHAP A1 - Alhwarin, Faraj A1 - Schiffer, Stefan A1 - Ferrein, Alexander A1 - Scholl, Ingrid T1 - Optimized KinectFusion Algorithm for 3D Scanning Applications T2 - Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 2: BIOIMAGING Y1 - 2018 SN - 978-989-758-278-3 U6 - https://doi.org/10.5220/0006594700500057 SP - 50 EP - 57 ER - TY - JOUR A1 - Molinnus, Denise A1 - Hardt, Gabriel A1 - Siegert, Petra A1 - Willenberg, Holger S. A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Detection of Adrenaline in Blood Plasma as Biomarker for Adrenal Venous Sampling JF - Electroanalysis N2 - An amperometric bi-enzyme biosensor based on substrate recycling principle for the amplification of the sensor signal has been developed for the detection of adrenaline in blood. Adrenaline can be used as biomarker verifying successful adrenal venous sampling procedure. The adrenaline biosensor has been realized via modification of a galvanic oxygen sensor with a bi-enzyme membrane combining a genetically modified laccase and a pyrroloquinoline quinone-dependent glucose dehydrogenase. The measurement conditions such as pH value and temperature were optimized to enhance the sensor performance. A high sensitivity and a low detection limit of about 0.5–1 nM adrenaline have been achieved in phosphate buffer at pH 7.4, relevant for measurements in blood samples. The sensitivity of the biosensor to other catecholamines such as noradrenaline, dopamine and dobutamine has been studied. Finally, the sensor has been successfully applied for the detection of adrenaline in human blood plasma. Y1 - 2018 U6 - https://doi.org/10.1002/elan.201800026 SN - 1521-4109 VL - 30 IS - 5 SP - 937 EP - 942 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Blanke, Tobias A1 - Dring, Bernd A1 - Vontein, Marius A1 - Kuhnhenne, Markus T1 - Climate Change Mitigation Potentials of Vertical Building Integrated Photovoltaic T2 - 8th International Workshop on Integration of Solar Power into Power Systems : 16-17 October 2018, Stockholm, Sweden Y1 - 2018 SP - 1 EP - 7 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Jablonski, Melanie A1 - Koch, Claudia A1 - Bronder, Thomas A1 - Rolka, David A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Field-effect biosensor using virus particles as scaffolds for enzyme immobilization JF - Biosensors and Bioelectronics N2 - A field-effect biosensor employing tobacco mosaic virus (TMV) particles as scaffolds for enzyme immobilization is presented. Nanotubular TMV scaffolds allow a dense immobilization of precisely positioned enzymes with retained activity. To demonstrate feasibility of this new strategy, a penicillin sensor has been developed by coupling a penicillinase with virus particles as a model system. The developed field-effect penicillin biosensor consists of an Al-p-Si-SiO₂-Ta₂O₅-TMV structure and has been electrochemically characterized in buffer solutions containing different concentrations of penicillin G. In addition, the morphology of the biosensor surface with virus particles was characterized by scanning electron microscopy and atomic force microscopy methods. The sensors possessed a high penicillin sensitivity of ~ 92 mV/dec in a nearly-linear range from 0.1 mM to 10 mM, and a low detection limit of about 50 µM. The long-term stability of the penicillin biosensor was periodically tested over a time period of about one year without any significant loss of sensitivity. The biosensor has also been successfully applied for penicillin detection in bovine milk samples. Y1 - 2018 U6 - https://doi.org/10.1016/j.bios.2018.03.036 SN - 0956-5663 VL - 110 SP - 168 EP - 174 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Harzheim, Thomas A1 - Heuermann, Holger T1 - Phase Repeatable Synthesizers as a New Harmonic Phase Standard for Nonlinear Network Analysis T2 - IEEE Transactions on Microwave Theory and Techniques Y1 - 2018 U6 - https://doi.org/10.1109/TMTT.2018.2817513 SP - 1 EP - 8 PB - IEEE ER - TY - JOUR A1 - Aboulnaga, Elhussiny A. A1 - Zou, Huibin A1 - Selmer, Thorsten A1 - Xian, Mo T1 - Development of a plasmid-based, tunable, tolC-derived expression system for application in Cupriavidus necator H16 JF - Journal of Biotechnology N2 - Cupriavidus necator H16 gains increasing attention in microbial research and biotechnological application due to its diverse metabolic features. Here we present a tightly controlled gene expression system for C. necator including the pBBR1-vector that contains hybrid promoters originating from C. necator native tolC-promoter in combination with a synthetic tetO-operator. The expression of the reporter gene from these plasmids relies on the addition of the exogenous inducer doxycycline (dc). The novel expression system offers a combination of advantageous features as; (i) high and dose-dependent recombinant protein production, (ii) tight control with a high dynamic range (On/Off ratio), which makes it applicable for harmful pathways or for toxic protein production, (iii) comparable cheap inducer (doxycycline, dc), (iv) effective at low inducer concentration, that makes it useful for large scale application, (v) rapid, diffusion controlled induction, and (vi) the inducer does not interfere within the cell metabolism. As applications of the expression system in C. necator H16, the growth ability on glycerol was enhanced by constitutively expressing the E. coli glpk gene-encoding for glycerol kinase. Likewise, we used the system to overcome the expression toxicity of mevalonate pathway in C. necator H16. With this system, the mevalonate-genes were successfully introduced in the host and the recombinant strains could produce about 200 mg/l mevalonate. Y1 - 2018 U6 - https://doi.org/10.1016/j.jbiotec.2018.03.007 SN - 0168-1656 VL - 274 SP - 15 EP - 27 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Richter, Charlotte A1 - Braunstein, Bjoern A1 - Stäudle, Benjamin A1 - Attias, Julia A1 - Suess, Alexander A1 - Weber, T. A1 - Rittweger, Joern A1 - Green, David A. A1 - Albracht, Kirsten T1 - In vivo fascicle length of the gastrocnemius muscle during walking in simulated martian gravity using two different body weight support devices T2 - 23rd Annual Congress of the European College of Sport Science, Dublin, Irland Y1 - 2018 ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - An Initial Sizing Methodology for Hybrid-Electric Light Aircraft T2 - AIAA AVIATION Forum 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, Georgia, June 25 - 29, 2018 Y1 - 2018 U6 - https://doi.org/10.2514/6.2018-4229 ER - TY - JOUR A1 - Rabehi, Amine A1 - Garlan, Benjamin A1 - Achtsnicht, Stefan A1 - Krause, Hans-Joachim A1 - Offenhäusser, Andreas A1 - Ngo, Kieu A1 - Neveu, Sophie A1 - Graff-Dubois, Stephanie A1 - Kokabi, Hamid T1 - Magnetic detection structure for Lab-on-Chip applications based on the frequency mixing technique JF - Sensors N2 - A magnetic frequency mixing technique with a set of miniaturized planar coils was investigated for use with a completely integrated Lab-on-Chip (LoC) pathogen sensing system. The system allows the detection and quantification of superparamagnetic beads. Additionally, in terms of magnetic nanoparticle characterization ability, the system can be used for immunoassays using the beads as markers. Analytical calculations and simulations for both excitation and pick-up coils are presented; the goal was to investigate the miniaturization of simple and cost-effective planar spiral coils. Following these calculations, a Printed Circuit Board (PCB) prototype was designed, manufactured, and tested for limit of detection, linear response, and validation of theoretical concepts. Using the magnetic frequency mixing technique, a limit of detection of 15 µg/mL of 20 nm core-sized nanoparticles was achieved without any shielding. KW - Lab-on-Chip KW - magnetic sensing KW - frequency mixing KW - superparamagnetic nanoparticles KW - magnetic beads Y1 - 2018 U6 - https://doi.org/10.3390/s18061747 SN - 1424-8220 VL - 18 IS - 6 PB - MDPI CY - Basel ER -