TY - CHAP A1 - Leise, Philipp A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Technical Operations Research (TOR) - Algorithms, not Engineers, Design Optimal Energy Efficient and Resilient Cooling Systems T2 - FAN2018 - Proceedings of the International Conference on Fan Noise, Aerodynamics, Applications and Systems N2 - The overall energy efficiency of ventilation systems can be improved by considering not only single components, but by considering as well the interplay between every part of the system. With the help of the method "TOR" ("Technical Operations Research"), which was developed at the Chair of Fluid Systems at TU Darmstadt, it is possible to improve the energy efficiency of the whole system by considering all possible design choices programmatically. We show the ability of this systematic design approach with a ventilation system for buildings as a use case example. Based on a Mixed-Integer Nonlinear Program (MINLP) we model the ventilation system. We use binary variables to model the selection of different pipe diameters. Multiple fans are model with the help of scaling laws. The whole system is represented by a graph, where the edges represent the pipes and fans and the nodes represents the source of air for cooling and the sinks, that have to be cooled. At the beginning, the human designer chooses a construction kit of different suitable fans and pipes of different diameters and different load cases. These boundary conditions define a variety of different possible system topologies. It is not possible to consider all topologies by hand. With the help of state of the art solvers, on the other side, it is possible to solve this MINLP. Next to this, we also consider the effects of malfunctions in different components. Therefore, we show a first approach to measure the resilience of the shown example use case. Further, we compare the conventional approach with designs that are more resilient. These more resilient designs are derived by extending the before mentioned model with further constraints, that consider explicitly the resilience of the overall system. We show that it is possible to design resilient systems with this method already in the early design stage and compare the energy efficiency and resilience of these different system designs. Y1 - 2018 N1 - International Conference on Fan Noise, Aerodynamics, Applications and Systems 18-20.04.2018 Darmstadt, Deutschland SP - 1 EP - 12 ER - TY - CHAP A1 - Leise, Philipp A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Energy-Efficient design of a water supply system for skyscrapers by mixed-integer nonlinear programming T2 - Operations Research Proceedings 2017 N2 - The energy-efficiency of technical systems can be improved by a systematic design approach. Technical Operations Research (TOR) employs methods known from Operations Research to find a global optimal layout and operation strategy of technical systems. We show the practical usage of this approach by the systematic design of a decentralized water supply system for skyscrapers. All possible network options and operation strategies are modeled by a Mixed-Integer Nonlinear Program. We present the optimal system found by our approach and highlight the energy savings compared to a conventional system design. KW - Engineering optimization KW - Global optimization KW - Energy efficiency KW - Water KW - Network Y1 - 2018 SN - 978-3-319-89919-0 U6 - http://dx.doi.org/10.1007/978-3-319-89920-6_63 PB - Springer CY - Cham ER - TY - CHAP A1 - Rausch, Lea A1 - Friesen, John A1 - Altherr, Lena A1 - Pelz, Peter F. ED - Kliewer, Natalia ED - Ehmke, Jan Fabian ED - Borndörfer, Ralf T1 - Using mixed-integer programming for the optimal design of water supply networks for slums T2 - Operations Research Proceedings 2017 N2 - The UN sets the goal to ensure access to water and sanitation for all people by 2030. To address this goal, we present a multidisciplinary approach for designing water supply networks for slums in large cities by applying mathematical optimization. The problem is modeled as a mixed-integer linear problem (MILP) aiming to find a network describing the optimal supply infrastructure. To illustrate the approach, we apply it on a small slum cluster in Dhaka, Bangladesh. Y1 - 2018 SN - 978-3-319-89919-0 (Print) SN - 978-3-319-89920-6 (Online) U6 - http://dx.doi.org/10.1007/978-3-319-89920-6_68 N1 - International Conference of the German Operations Research Society (GOR), Freie Universiät Berlin, Germany, September 6-8, 2017. SP - 509 EP - 516 PB - Springer CY - Cham ER - TY - CHAP A1 - Altherr, Lena A1 - Dörig, Bastian A1 - Ederer, Thorsten A1 - Pelz, Peter Franz A1 - Pfetsch, Marc A1 - Wolf, Jan T1 - A mixed-integer nonlinear program for the design of gearboxes T2 - Operations Research Proceedings 2016 N2 - Gearboxes are mechanical transmission systems that provide speed and torque conversions from a rotating power source. Being a central element of the drive train, they are relevant for the efficiency and durability of motor vehicles. In this work, we present a new approach for gearbox design: Modeling the design problem as a mixed-integer nonlinear program (MINLP) allows us to create gearbox designs from scratch for arbitrary requirements and—given enough time—to compute provably globally optimal designs for a given objective. We show how different degrees of freedom influence the runtime and present an exemplary solution. Y1 - 2017 SN - 978-3-319-55701-4 U6 - http://dx.doi.org/10.1007/978-3-319-55702-1_31 SP - 227 EP - 233 PB - Springer CY - Cham ER - TY - CHAP A1 - Altherr, Lena A1 - Pelz, Peter F. A1 - Ederer, Thorsten A1 - Pfetsch, Marc E. ED - Jacobs, Georg T1 - Optimale Getriebe auf Knopfdruck: Gemischt-ganzzahlige nichtlineare Optimierung zur Entscheidungsunterstützung bei der Auslegung von Getrieben für Kraftfahrzeuge T2 - Antriebstechnisches Kolloquium ATK 2017 Y1 - 2017 SN - 9783743148970 N1 - Antriebstechnisches Kolloquium ATK 2017, 07.03-08.03.2017. Aachen, Deutschland SP - 313 EP - 325 ER - TY - CHAP A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Schänzle, Christian A1 - Lorenz, Ulf A1 - Pelz, Peter F. T1 - Algorithmic system design using scaling and affinity laws T2 - Operations Research Proceedings 2015 N2 - Energy-efficient components do not automatically lead to energy-efficient systems. Technical Operations Research (TOR) shifts the focus from the single component to the system as a whole and finds its optimal topology and operating strategy simultaneously. In previous works, we provided a preselected construction kit of suitable components for the algorithm. This approach may give rise to a combinatorial explosion if the preselection cannot be cut down to a reasonable number by human intuition. To reduce the number of discrete decisions, we integrate laws derived from similarity theory into the optimization model. Since the physical characteristics of a production series are similar, it can be described by affinity and scaling laws. Making use of these laws, our construction kit can be modeled more efficiently: Instead of a preselection of components, it now encompasses whole model ranges. This allows us to significantly increase the number of possible set-ups in our model. In this paper, we present how to embed this new formulation into a mixed-integer program and assess the run time via benchmarks. We present our approach on the example of a ventilation system design problem. KW - Optimal Topology KW - Piecewise Linearization KW - Ventilation System KW - Similarity Theory Y1 - 2017 SN - 978-3-319-42901-4 SN - 978-3-319-42902-1 U6 - http://dx.doi.org/10.1007/978-3-319-42902-1 N1 - International Conference of the German, Austrian and Swiss Operations Research Societies (GOR, ÖGOR, SVOR/ASRO), University of Vienna, Austria, September 1-4, 2015 SP - 605 EP - 611 PB - Springer CY - Cham ER - TY - CHAP A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Farnetane, Lucas S. A1 - Pöttgen, Philipp A1 - Vergé, Angela A1 - Pelz, Peter F. T1 - Multicriterial design of a hydrostatic transmission system via mixed-integer programming T2 - Operations Research Proceedings 2015 N2 - In times of planned obsolescence the demand for sustainability keeps growing. Ideally, a technical system is highly reliable, without failures and down times due to fast wear of single components. At the same time, maintenance should preferably be limited to pre-defined time intervals. Dispersion of load between multiple components can increase a system’s reliability and thus its availability inbetween maintenance points. However, this also results in higher investment costs and additional efforts due to higher complexity. Given a specific load profile and resulting wear of components, it is often unclear which system structure is the optimal one. Technical Operations Research (TOR) finds an optimal structure balancing availability and effort. We present our approach by designing a hydrostatic transmission system. Y1 - 2017 SN - 978-3-319-42901-4 SN - 978-3-319-42902-1 U6 - http://dx.doi.org/10.1007/978-3-319-42902-1_41 N1 - International Conference of the German, Austrian and Swiss Operations Research Societies (GOR, ÖGOR, SVOR/ASRO), University of Vienna, Austria, September 1-4, 2015 SP - 301 EP - 307 PB - Springer CY - Cham ER - TY - BOOK A1 - Altherr, Lena T1 - Algorithmic System Design under Consideration of Dynamic Processes N2 - Nach Stand von Wissenschaft und Technik werden Komponenten hinsichtlich ihrer Eigenschaften, wie Lebensdauer oder Energieeffizienz, optimiert. Allerdings können selbst hervorragende Komponenten zu ineffizienten oder instabilen Systemen führen, wenn ihr Zusammenspiel nur unzureichend berücksichtigt wird. Eine Systembetrachtung schafft ein größeres Optimierungspotential - dem erhöhten Potential steht jedoch auch ein erhöhter Komplexitätsgrad gegenüber. Die vorliegende Arbeit ist im Rahmen des Sonderforschungsbereichs 805 entstanden, dessen Ziel die Beherrschung von Unsicherheit in Systemen des Maschinenbaus ist. Die Arbeit zeigt anhand eines realen Systems aus dem Bereich der Hydraulik, wie Unsicherheit in der Entwicklungsphase beherrscht werden kann. Hierbei ist neu, dass die durch den späteren Betrieb zu erwartende Systemdegradation eines jeden möglichen Systemvorschlags antizipiert werden kann. Dadurch können Betriebs- und Wartungskosten vorausgesagt und minimiert werden und durch eine optimale Betriebs- und Wartungsstrategie die Verfügbarkeit des Systems garantiert werden. Wesentliche Fragen bei der optimalen Auslegung des betrachteten hydrostatischen Getriebes sind dessen physikalische Modellierung, die Darstellung des Optimierungsproblems als gemischt-ganzzahliges lineares Programm, und dessen algorithmische Behandlung zur Lösungsfindung. Hierzu werden Heuristiken zum schnelleren Auffinden sinnvoller Systemtopologien vorgestellt und mittels mathematischer Dekomposition eine Bewertung des dynamischen Verschleiß- und Wartungsverlaufs möglicher Systemvorschläge vorgenommen. Die Arbeit stellt die Optimierung technischer Systeme an der Schnittstelle von Mathematik, Informatik und Ingenieurwesen sowohl gründlich als auch anschaulich und nachvollziehbar dar. KW - Mixed Integer Programming KW - Technical Operations Research KW - Optimization KW - System Design Y1 - 2016 SN - 978-3-8440-4848-3 PB - Shaker CY - Aachen ER - TY - CHAP A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Lorenz, Ulf A1 - Pelz, Peter F. A1 - Pöttgen, Philipp ED - Lübbecke, Marco E. ED - Koster, Arie ED - Letmathe, Peter ED - Madlener, Reihard ED - Preis, Britta ED - Walther, Grit T1 - Designing a feedback control system via mixed-integer programming T2 - Operations Research Proceedings 2014: Selected Papers of the Annual International Conference of the German Operations Research N2 - Pure analytical or experimental methods can only find a control strategy for technical systems with a fixed setup. In former contributions we presented an approach that simultaneously finds the optimal topology and the optimal open-loop control of a system via Mixed Integer Linear Programming (MILP). In order to extend this approach by a closed-loop control we present a Mixed Integer Program for a time discretized tank level control. This model is the basis for an extension by combinatorial decisions and thus for the variation of the network topology. Furthermore, one is able to appraise feasible solutions using the global optimality gap. KW - Optimal Topology KW - Controller Parameter KW - Level Control System KW - Technical Operation Research KW - Optimal Closed Loop Y1 - 2016 SN - 978-3-319-28695-2 U6 - http://dx.doi.org/10.1007/978-3-319-28697-6_18 SP - 121 EP - 127 PB - Springer CY - Cham ER - TY - CHAP A1 - Rausch, Lea A1 - Leise, Philipp A1 - Ederer, Thorsten A1 - Altherr, Lena A1 - Pelz, Peter F. ED - Papadrakakis, M. ED - Ppadopoulos, V. ED - Stefanou, G. ED - Plevris, V. T1 - A comparison of MILP and MINLP solver performance on the example of a drinking water supply system design problem T2 - ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering N2 - Finding a good system topology with more than a handful of components is a highly non-trivial task. The system needs to be able to fulfil all expected load cases, but at the same time the components should interact in an energy-efficient way. An example for a system design problem is the layout of the drinking water supply of a residential building. It may be reasonable to choose a design of spatially distributed pumps which are connected by pipes in at least two dimensions. This leads to a large variety of possible system topologies. To solve such problems in a reasonable time frame, the nonlinear technical characteristics must be modelled as simple as possible, while still achieving a sufficiently good representation of reality. The aim of this paper is to compare the speed and reliability of a selection of leading mathematical programming solvers on a set of varying model formulations. This gives us empirical evidence on what combinations of model formulations and solver packages are the means of choice with the current state of the art. KW - Technical Operations Research KW - Mixed-Integer Nonlinear Optimisation KW - Solver Per- formance KW - Drinking Water Supply KW - System Design Problem Y1 - 2016 SN - 978-618-82844-0-1 N1 - ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering, 5–10 June 2016.Crete Island, Greece SP - 8509 EP - 8527 ER -