TY - JOUR A1 - Buniatyan, V. A1 - Huck, Christina A1 - Poghossian, Arshak A1 - Aroutiounian, V. M. A1 - Schöning, Michael Josef T1 - BaxSr1-x TiO3/pc-Si heterojunction JF - Armenian journal of physics Y1 - 2013 SN - 1829-1171 VL - 6 IS - 4 SP - 177 EP - 187 PB - National Academy of Sciences of Armenia CY - Yerevan ER - TY - JOUR A1 - Poghossian, Arshak A1 - Weil, M. A1 - Cherstvy, A. G. A1 - Schöning, Michael Josef T1 - Electrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices JF - Analytical and bioanalytical chemistry N2 - The semiconductor field-effect platform represents a powerful tool for detecting the adsorption and binding of charged macromolecules with direct electrical readout. In this work, a capacitive electrolyte–insulator–semiconductor (EIS) field-effect sensor consisting of an Al-p-Si-SiO2 structure has been applied for real-time in situ electrical monitoring of the layer-by-layer formation of polyelectrolyte (PE) multilayers (PEM). The PEMs were deposited directly onto the SiO2 surface without any precursor layer or drying procedures. Anionic poly(sodium 4-styrene sulfonate) and cationic weak polyelectrolyte poly(allylamine hydrochloride) have been chosen as a model system. The effect of the ionic strength of the solution, polyelectrolyte concentration, number and polarity of the PE layers on the characteristics of the PEM-modified EIS sensors have been studied by means of capacitance–voltage and constant-capacitance methods. In addition, the thickness, surface morphology, roughness and wettabilityof the PE mono- and multilayers have been characterised by ellipsometry, atomic force microscopy and water contact-angle methods, respectively. To explain potential oscillations on the gate surface and signal behaviour of the capacitive field-effect EIS sensor modified with a PEM, a simplified electrostatic model that takes into account the reduced electrostatic screening of PE charges by mobile ions within the PEM has been proposed and discussed. Y1 - 2013 U6 - http://dx.doi.org/10.1007/s00216-013-6951-9 SN - 1432-1130 ; 1618-2642 VL - 405 IS - 20 SP - 6425 EP - 6436 PB - Springer CY - Berlin ER - TY - JOUR A1 - Huck, Christina A1 - Schiffels, Johannes A1 - Herrera, Cony N. A1 - Schelden, Maximilian A1 - Selmer, Thorsten A1 - Poghossian, Arshak A1 - Baumann, Marcus A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Metabolic responses of Escherichia coli upon glucose pulses captured by a capacitive field-effect sensor JF - Physica Status Solidi (A) N2 - Living cells are complex biological systems transforming metabolites taken up from the surrounding medium. Monitoring the responses of such cells to certain substrate concentrations is a challenging task and offers possibilities to gain insight into the vitality of a community influenced by the growth environment. Cell-based sensors represent a promising platform for monitoring the metabolic activity and thus, the “welfare” of relevant organisms. In the present study, metabolic responses of the model bacterium Escherichia coli in suspension, layered onto a capacitive field-effect structure, were examined to pulses of glucose in the concentration range between 0.05 and 2 mM. It was found that acidification of the surrounding medium takes place immediately after glucose addition and follows Michaelis–Menten kinetic behavior as a function of the glucose concentration. In future, the presented setup can, therefore, be used to study substrate specificities on the enzymatic level and may as well be used to perform investigations of more complex metabolic responses. Conclusions and perspectives highlighting this system are discussed. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200900 SN - 0031-8965 VL - 210 IS - 5 SP - 926 EP - 931 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Bäcker, Matthias A1 - Rakowski, D. A1 - Poghossian, Arshak A1 - Biselli, Manfred A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis JF - Journal of Biotechnology N2 - A microfluidic chip integrating amperometric enzyme sensors for the detection of glucose, glutamate and glutamine in cell-culture fermentation processes has been developed. The enzymes glucose oxidase, glutamate oxidase and glutaminase were immobilized by means of cross-linking with glutaraldehyde on platinum thin-film electrodes integrated within a microfluidic channel. The biosensor chip was coupled to a flow-injection analysis system for electrochemical characterization of the sensors. The sensors have been characterized in terms of sensitivity, linear working range and detection limit. The sensitivity evaluated from the respective peak areas was 1.47, 3.68 and 0.28 μAs/mM for the glucose, glutamate and glutamine sensor, respectively. The calibration curves were linear up to a concentration of 20 mM glucose and glutamine and up to 10 mM for glutamate. The lower detection limit amounted to be 0.05 mM for the glucose and glutamate sensor, respectively, and 0.1 mM for the glutamine sensor. Experiments in cell-culture medium have demonstrated a good correlation between the glutamate, glutamine and glucose concentrations measured with the chip-based biosensors in a differential-mode and the commercially available instrumentation. The obtained results demonstrate the feasibility of the realized microfluidic biosensor chip for monitoring of bioprocesses. Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.jbiotec.2012.03.014 SN - 0168-1656 VL - 163 IS - 4 SP - 371 EP - 376 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schusser, Sebastian A1 - Leinhos, Marcel A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Impedance spectroscopy: A tool for real-time in situ monitoring of the degradation of biopolymers JF - Physica Status Solidi (A) N2 - Investigation of the degradation kinetics of biodegradable polymers is essential for the development of implantable biomedical devices with predicted biodegradability. In this work, an impedimetric sensor has been applied for real-time and in situ monitoring of degradation processes of biopolymers. The sensor consists of two platinum thin-film electrodes covered by a polymer film to be studied. The benchmark biomedical polymer poly(D,L-lactic acid) (PDLLA) was used as a model system. PDLLA films were deposited on the sensor structure from a polymer solution by using the spin-coating method. The degradation kinetics of PDLLA films have been studied in alkaline solutions of pH 9 and 12 by means of an impedance spectroscopy (IS) method. Any changes in a polymer capacitance/resistance induced by water uptake and/or polymer degradation will modulate the global impedance of the polymer-covered sensor that can be used as an indicator of the polymer degradation. The degradation rate can be evaluated from the time-dependent impedance spectra. As expected, a faster degradation has been observed for PDLLA films exposed to pH 12 solution. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200941 SN - 1521-396X ; 0031-8965 VL - 210 IS - 5 SP - 905 EP - 910 PB - Wiley CY - Weinheim ER - TY - CHAP A1 - Poghossian, Arshak A1 - Abouzar, Maryam H. A1 - Schöning, Michael Josef ED - Abdelghani, Adnane ED - Schöning, Michael Josef T1 - (Bio-­)chemical sensor array based on nanoplate SOI capacitors T2 - Nanoscale Science and Technology (NS&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012 Y1 - 2012 SP - 31 EP - 31 ER - TY - CHAP A1 - Schusser, Sebastian A1 - Leinhos, Marcel A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef ED - Abdelghani, Adnane ED - Schöning, Michael Josef T1 - Biopolymer-degradation monitoring by chip-­based impedance spectroscopy technique T2 - Nanoscale Science and Technology (NS&T´12) : Proceedings Book Humboldt Kolleg ; Tunisia, 17-19 March, 2012 Y1 - 2012 SP - 47 EP - 47 ER - TY - JOUR A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Cherstvy, Andrey G. A1 - Pedraza, Angela M. A1 - Ingebrandt, Sven A1 - Schöning, Michael Josef T1 - Label-free electrical detection of DNA by means of field-effect nanoplate capacitors: Experiments and modeling JF - Physica Status Solidi (a) N2 - Label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization/denaturation by means of an array of individually addressable field-effect-based nanoplate silicon-on-insulator (SOI) capacitors modified with gold nanoparticles (Au-NP) is investigated. The proposed device detects charge changes on Au-NP/DNA hybrids induced by the hybridization or denaturation event. DNA hybridization was performed in a high ionic-strength solution to provide a high hybridization efficiency. On the other hand, to reduce the screening of the DNA charge by counter ions and to achieve a high sensitivity, the sensor signal induced by the hybridization and denaturation events was measured in a low ionic-strength solution. High sensor signals of about 120, 90, and 80 mV were registered after the DNA hybridization, denaturation, and re-hybridization events, respectively. Fluorescence microscopy has been applied as reference method to verify the DNA immobilization, hybridization, and denaturation processes. An electrostatic charge-plane model for potential changes at the gate surface of a nanoplate field-effect sensor induced by the DNA hybridization has been developed taking into account both the Debye length and the distance of the DNA charge from the gate surface. Y1 - 2012 U6 - http://dx.doi.org/10.1002/pssa.201100710 SN - 1862-6319 VL - 209 SP - 925 EP - 934 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Bäcker, Matthias A1 - Raue, Markus A1 - Schusser, Sebastian A1 - Jeitner, C. A1 - Breuer, L. A1 - Wagner, P. A1 - Poghossian, Arshak A1 - Förster, Arnold A1 - Mang, Thomas A1 - Schöning, Michael Josef T1 - Microfluidic chip with integrated microvalves based on temperature- and pH-responsive hydrogel thin films JF - Physica Status Solidi (a) N2 - Two types of microvalves based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) and pH-responsive poly(sodium acrylate) (PSA) hydrogel films have been developed and tested. The PNIPAAm and PSA hydrogel films were prepared by means of in situ photopolymerization directly inside the fluidic channel of a microfluidic chip fabricated by combining Si and SU-8 technologies. The swelling/shrinking properties and height changes of the PNIPAAm and PSA films inside the fluidic channel were studied at temperatures of deionized water from 14 to 36 °C and different pH values (pH 3–12) of Titrisol buffer, respectively. Additionally, in separate experiments, the lower critical solution temperature (LCST) of the PNIPAAm hydrogel was investigated by means of a differential scanning calorimetry (DSC) and a surface plasmon resonance (SPR) method. Mass-flow measurements have shown the feasibility of the prepared hydrogel films to work as an on-chip integrated temperature- or pH-responsive microvalve capable to switch the flow channel on/off. Y1 - 2012 U6 - http://dx.doi.org/10.1002/pssa.201100763 SN - 1862-6319 VL - 209 IS - 5 SP - 839 EP - 845 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schusser, Sebastian A1 - Poghossian, Arshak A1 - Bäcker, Matthias A1 - Leinhos, Marcel A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Characterization of biodegradable polymers with capacitive field-effect sensors JF - Sensors and actuators B: Chemical N2 - In vitro studies of the degradation kinetic of biopolymers are essential for the design and optimization of implantable biomedical devices. In the presented work, a field-effect capacitive sensor has been applied for the real-time and in situ monitoring of degradation processes of biopolymers for the first time. The polymer-covered field-effect sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. The feasibility of this approach has been experimentally proven by using the commercially available biomedical polymer poly(D,L-lactic acid) (PDLLA) as a model system. PDLLA films of different thicknesses were deposited on the Ta₂O₅-gate surface of the field-effect structure from a polymer solution by means of spin-coating method. The polymer-modified field-effect sensors have been characterized by means of capacitance–voltage and impedance-spectroscopy method. The degradation of the PDLLA was accelerated by changing the degradation medium from neutral (pH 7.2) to alkaline (pH 9) condition, resulting in drastic changes in the capacitance and impedance spectra of the polymer-modified field-effect sensor. KW - Impedance spectroscopy KW - C–V method KW - Real-time monitoring KW - Poly(d,l-lacticacid) KW - (Bio)degradation KW - Field-effect sensor Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.snb.2012.07.099 SN - 0925-4005 N1 - Part of special issue "Selected Papers from the 14th International Meeting on Chemical Sensors" VL - 187 SP - 2 EP - 7 PB - Elsevier CY - Amsterdam ER -