TY - CHAP A1 - Fateri, Miranda A1 - Gebhardt, Andreas A1 - Gabrielli, Roland Antonius A1 - Herdrich, Georg A1 - Fasoulas, Stefanos A1 - Großmann, Agnes A1 - Schnauffer, Peter A1 - Middendorf, Peter T1 - Additive Manufacturing of Lunar Regolith for Extra-terrestrial Industry Plant T2 - International Symposium on Space Technology and Science (ICTS). July 2015, Kobe, Japan Y1 - 2015 ER - TY - CHAP A1 - Gabrielli, Roland Antonius A1 - Mathies, Johannes A1 - Großmann, Agnes A1 - Herdrich, Georg A1 - Fasoulas, Stefanos A1 - Middendorf, Peter A1 - Fateri, Miranda A1 - Gebhardt, Andreas T1 - Space Propulsion Considerations for a Lunar Take Off Industry Based on Regolith T2 - International Symposium on Space Technology and Science (ISTS). July 2015, Kobe, Japan Y1 - 2015 ER - TY - CHAP A1 - Fateri, Miranda A1 - Gebhardt, Andreas A1 - Renftle, Georg T1 - Additive Manufacturing of Drainage Segments for Cooling System of Crucibles Melting Furnaces T2 - International Conference and Expo on Advanced Ceramics and Composites, (ICACC). January 2015, Florida, USA N2 - The cooling process in induction based crucible melting furnaces for Industrial applications is one of the important and challenging factors in production and safety engineering. Accordingly, proper implementation of the cooling system of the furnace using optimum cooling guides and fail-safe features are critical in order to improve the safety of the process. Regarding this, manufacturing of porous material with high electrical isolation for the drainage segments of the cooling channels is examined in this study. Consequently, various geometries with different porosities using glass and ceramic powder are fabricated using Selective Laser Sintering (SLS) process. The manufactured parts are examined in a prototype furnace testing and the feasibility of the SLS manufacturing of parts for this application is discussed. Y1 - 2015 ER - TY - JOUR A1 - Dikta, Gerhard A1 - Kühlheim, René A1 - Mendonca, Jorge A1 - Una-Alcarez, Jacobo de T1 - Asymptotic representation of presmoothed Kaplan–Meier integrals with covariates in a semiparametric censorship model JF - Journal of Statistical Planning and Inference Y1 - 2015 U6 - https://doi.org/10.1016/j.jspi.2015.12.001 SN - 0378-3758 VL - Vol. 171 SP - 10 EP - 37 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Kremers, Alexander A1 - Pieper, Martin T1 - Simulation and Verification of Bionic Heat Exchangers with COMSOL Multiphysics® Software T2 - COMSOL Conference 2015 User Presentations ; COMSOL Conference 2015 Grenoble October 14 - 16, 2015 - World Trade Center, Grenoble, France Y1 - 2015 PB - COMSOL CY - Göttingen ; Berlin ER - TY - CHAP A1 - Horikawa, Atsushi A1 - Okada, Kunio A1 - Kazari, Masahide A1 - Funke, Harald A1 - Keinz, Jan A1 - Kusterer, Karsten A1 - Haj Ayed, Anis T1 - Application of Low NOx Micro-Mix Hydrogen Combustion to Industrial Gas Turbine Combustor and Conceptual Design T2 - Proceedings of International Gas Turbine Congress 2015 Tokyo November 15-20, 2015, Tokyo, Japan Y1 - 2015 SN - 978-4-89111-008-6 N1 - IGTC15-0238 SP - 141 EP - 146 ER - TY - CHAP A1 - Funke, Harald A1 - Keinz, Jan A1 - Haj Ayed, A. A1 - Kazari, M. A1 - Kitajima, J. A1 - Horikawa, A. A1 - Okada, K. T1 - Development and Testing of a Low NOx Micromix Combustion Chamber for an Industrial Gas Turbine T2 - Proceedings of International Gas Turbine Congress 2015 Tokyo November 15-20, 2015, Tokyo, Japan Y1 - 2015 SN - 978-4-89111-008-6 N1 - IGTC15-0092 SP - 131 EP - 140 ER - TY - CHAP A1 - Höfler, M. A1 - Kneer, R. A1 - Groß, Rolf Fritz A1 - Kehrmann, K. ED - Vorobieff, P. T1 - Chemical determination of oxygen transfer rates, transfer efficiencies and interphases evoked by aeration elements for liquid flows T2 - Computational Methods in Multiphase Flow VIII. - (WIT Transactions on Engineering Sciences ; Volume 89) Y1 - 2015 SN - 978-1-84564-946-3 (Print-Ausgabe) SN - 978-1-84564-947-0 (Online-Ausgabe) SN - 1746-4471 SP - 89 EP - 101 PB - WIT Press CY - Southampton ER - TY - JOUR A1 - Reisert, Steffen A1 - Geissler, H. A1 - Weiler, C. A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Multiple sensor-type system for monitoring the microbicidal effectiveness of aseptic sterilisation processes JF - Food control N2 - The present work describes a novel multiple sensor-type system for the real-time analysis of aseptic sterilisation processes employing gaseous hydrogen peroxide (H2O2) as a sterilant. The inactivation kinetics of Bacillus atrophaeus by gaseous H2O2 have been investigated by means of a methodical calibration experiment, taking into account the process variables H2O2 concentration, humidity and gas temperature. It has been found that the microbicidal effectiveness at H2O2 concentrations above 2% v/v is largely determined by the concentration itself, while at lower H2O2 concentrations, the gas temperature and humidity play a leading role. Furthermore, the responses of different types of gas sensors towards the influencing factors of the sterilisation process have been analysed within the same experiment. Based on a correlation established between the inactivation kinetics and the sensor responses, a calorimetric H2O2 sensor and a metal-oxide semiconductor (MOX) sensor have been identified as possible candidates for monitoring the microbicidal effectiveness of aseptic sterilisation processes employing gaseous H2O2. Therefore, two linear models that describe the relationship between sensor response and microbicidal effectiveness have been proposed. Y1 - 2015 U6 - https://doi.org/10.1016/j.foodcont.2014.07.063 SN - 1873-7129 (E-Journal); 0956-7135 (Print) VL - 47 SP - 615 EP - 622 ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Recent developments of chemical imaging sensor systems based on the principle of the light-addressable potentiometric sensor JF - Sensors and actuators B: Chemical N2 - The light-addressable potentiometric sensor (LAPS) is an electrochemical sensor with a field-effect structure to detect the variation of the Nernst potential at its sensor surface, the measured area on which is defined by illumination. Thanks to this light-addressability, the LAPS can be applied to chemical imaging sensor systems, which can visualize the two-dimensional distribution of a particular target ion on the sensor surface. Chemical imaging sensor systems are expected to be useful for analysis of reaction and diffusion in various electrochemical and biological samples. Recent developments of LAPS-based chemical imaging sensor systems, in terms of the spatial resolution, measurement speed, image quality, miniaturization and integration with microfluidic devices, are summarized and discussed. Y1 - 2015 U6 - https://doi.org/10.1016/j.snb.2014.09.002 SN - 1873-3077 (E-Journal); 0925-4005 (Print) VL - 207, Part B SP - 926 EP - 932 PB - Elsevier CY - Amsterdam ER -