TY - JOUR A1 - Asar, Hande A1 - Stapenhorst, Carolin T1 - Zvi Hecker: Drawing on drawing JF - Archives of Design Research N2 - Background: Architectural representation, nurtured by the interaction between design thinking and design action, is inherently multi-layered. However, the representation object cannot always reflect these layers. Therefore, it is claimed that these reflections and layerings can gain visibility through ‘performativity in personal knowledge’, which basically has a performative character. The specific layers of representation produced during the performativity in personal knowledge permit insights about the ‘personal way of designing’ [1]. Therefore, the question, ‘how can these layered drawings be decomposed to understand the personal way of designing’, can be defined as the beginning of the study. On the other hand, performativity in personal knowledge in architectural design is handled through the relationship between explicit and tacit knowledge and representational and non-representational theory. To discuss the practical dimension of these theoretical relations, Zvi Hecker's drawing of the Heinz-Galinski-School is examined as an example. The study aims to understand the relationships between the layers by decomposing a layered drawing analytically in order to exemplify personal ways of designing. Methods: The study is based on qualitative research methodologies. First, a model has been formed through theoretical readings to discuss the performativity in personal knowledge. This model is used to understand the layered representations and to research the personal way of designing. Thus, one drawing of Hecker’s Heinz-Galinski-School project is chosen. Second, its layers are decomposed to detect and analyze diverse objects, which hint to different types of design tools and their application. Third, Zvi Hecker’s statements of the design process are explained through the interview data [2] and other sources. The obtained data are compared with each other. Results: By decomposing the drawing, eleven layers are defined. These layers are used to understand the relation between the design idea and its representation. They can also be thought of as a reading system. In other words, a method to discuss Hecker’s performativity in personal knowledge is developed. Furthermore, the layers and their interconnections are described in relation to Zvi Hecker’s personal way of designing. Conclusions: It can be said that layered representations, which are associated with the multilayered structure of performativity in personal knowledge, form the personal way of designing. KW - Performativity in Personal Knowledge KW - Personal Way of Designing KW - Architectural layered Representation KW - Architectural Design Y1 - 2020 U6 - https://doi.org/10.15187/adr.2020.08.33.3.45 SN - 1226-8046 SN - 2288-2987 (eISSN) VL - 33 IS - 3 SP - 45 EP - 53 PB - Korean Society of Design Science CY - Seongnam ER - TY - JOUR A1 - Stapenhorst, Carolin A1 - Zabek, Magdalena A1 - Hildebrand, Linda T1 - Communication process and information flow in the architectural planning context JF - Creativity game : theory and practice of spatial planning N2 - Against the background of growing data in everyday life, data processing tools become more powerful to deal with the increasing complexity in building design. The architectural planning process is offered a variety of new instruments to design, plan and communicate planning decisions. Ideally the access to information serves to secure and document the quality of the building and in the worst case, the increased data absorbs time by collection and processing without any benefit for the building and its user. Process models can illustrate the impact of information on the design- and planning process so that architect and planner can steer the process. This paper provides historic and contemporary models to visualize the architectural planning process and introduces means to describe today’s situation consisting of stakeholders, events and instruments. It explains conceptions during Renaissance in contrast to models used in the second half of the 20th century. Contemporary models are discussed regarding their value against the background of increasing computation in the building process. KW - Planning process KW - Manifestations KW - Tools KW - Conditions KW - Actors KW - Structure and Stages KW - Design process Y1 - 2018 U6 - https://doi.org/10.15292/IU-CG.2018.06.066-073 IS - 6 SP - 66 EP - 73 PB - University of Ljubljana CY - Ljubljana ER - TY - JOUR A1 - Stapenhorst, Carolin A1 - Motta, Luciano T1 - Città Olivettiana in Ivrea, Italien JF - Bauwelt Y1 - 2018 SN - 0005-6855 VL - 109 IS - 22 SP - 20 EP - 31 PB - Bauverlag BV CY - Gütersloh ER - TY - JOUR A1 - Stapenhorst, Carolin A1 - Dutto, Andrea Alberto T1 - Notes on conceptual learning in architecture JF - Cartha - The Form of Form Y1 - 2016 N1 - Auch enthalten in der Buchausgabe "CARTHA – On the Form of Form", ISBN 978-3-03860-070-1, Park Books, 2019 CY - Basel ER - TY - JOUR A1 - Kohl, Philipp A1 - Krämer, Yoka A1 - Fohry, Claudia A1 - Kraft, Bodo ED - Fred, Ana ED - Hadjali, Allel ED - Gusikhin, Oleg ED - Sansone, Carlo T1 - Scoping review of active learning strategies and their evaluation environments for entity recognition tasks JF - Deep learning theory and applications N2 - We conducted a scoping review for active learning in the domain of natural language processing (NLP), which we summarize in accordance with the PRISMA-ScR guidelines as follows: Objective: Identify active learning strategies that were proposed for entity recognition and their evaluation environments (datasets, metrics, hardware, execution time). Design: We used Scopus and ACM as our search engines. We compared the results with two literature surveys to assess the search quality. We included peer-reviewed English publications introducing or comparing active learning strategies for entity recognition. Results: We analyzed 62 relevant papers and identified 106 active learning strategies. We grouped them into three categories: exploitation-based (60x), exploration-based (14x), and hybrid strategies (32x). We found that all studies used the F1-score as an evaluation metric. Information about hardware (6x) and execution time (13x) was only occasionally included. The 62 papers used 57 different datasets to evaluate their respective strategies. Most datasets contained newspaper articles or biomedical/medical data. Our analysis revealed that 26 out of 57 datasets are publicly accessible. Conclusion: Numerous active learning strategies have been identified, along with significant open questions that still need to be addressed. Researchers and practitioners face difficulties when making data-driven decisions about which active learning strategy to adopt. Conducting comprehensive empirical comparisons using the evaluation environment proposed in this study could help establish best practices in the domain. Y1 - 2024 SN - 978-3-031-66694-0 (online ISBN) SN - 978-3-031-66693-3 (print ISBN) U6 - https://doi.org/10.1007/978-3-031-66694-0_6 SP - 84 EP - 106 PB - Springer CY - Cham ER - TY - JOUR A1 - Stapenhorst, Carolin A1 - Dutto, Andrea Alberto T1 - Turin: Industriedenkmal wird Kulturzentrum wird Lazarett JF - Bauwelt Y1 - 2020 SN - 0005-6855 VL - 111 IS - 13 SP - 56 EP - 59 PB - Bauverlag BV CY - Gütersloh ER - TY - JOUR A1 - Mikucki, Jill Ann A1 - Schuler, C. G. A1 - Digel, Ilya A1 - Kowalski, Julia A1 - Tuttle, M. J. A1 - Chua, Michelle A1 - Davis, R. A1 - Purcell, Alicia A1 - Ghosh, D. A1 - Francke, G. A1 - Feldmann, M. A1 - Espe, C. A1 - Heinen, Dirk A1 - Dachwald, Bernd A1 - Clemens, Joachim A1 - Lyons, W. B. A1 - Tulaczyk, S. T1 - Field-Based planetary protection operations for melt probes: validation of clean access into the blood falls, antarctica, englacial ecosystem JF - Astrobiology N2 - Subglacial environments on Earth offer important analogs to Ocean World targets in our solar system. These unique microbial ecosystems remain understudied due to the challenges of access through thick glacial ice (tens to hundreds of meters). Additionally, sub-ice collections must be conducted in a clean manner to ensure sample integrity for downstream microbiological and geochemical analyses. We describe the field-based cleaning of a melt probe that was used to collect brine samples from within a glacier conduit at Blood Falls, Antarctica, for geomicrobiological studies. We used a thermoelectric melting probe called the IceMole that was designed to be minimally invasive in that the logistical requirements in support of drilling operations were small and the probe could be cleaned, even in a remote field setting, so as to minimize potential contamination. In our study, the exterior bioburden on the IceMole was reduced to levels measured in most clean rooms, and below that of the ice surrounding our sampling target. Potential microbial contaminants were identified during the cleaning process; however, very few were detected in the final englacial sample collected with the IceMole and were present in extremely low abundances (∼0.063% of 16S rRNA gene amplicon sequences). This cleaning protocol can help minimize contamination when working in remote field locations, support microbiological sampling of terrestrial subglacial environments using melting probes, and help inform planetary protection challenges for Ocean World analog mission concepts. Y1 - 2023 U6 - https://doi.org/10.1089/ast.2021.0102 SN - 1557-8070 (online) SN - 153-1074 (print) VL - 23 IS - 11 SP - 1165 EP - 1178 PB - Liebert CY - New York, NY ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Kozhahmetova, Marzhan A1 - Sherelkhan, Dinara K. A1 - Tauanov, Zhandos T1 - Hydrogenotrophic methanogenesis in coal-bearing environments: Methane production, carbon sequestration, and hydrogen availability JF - International Journal of Hydrogen Energy N2 - Methane is a valuable energy source helping to mitigate the growing energy demand worldwide. However, as a potent greenhouse gas, it has also gained additional attention due to its environmental impacts. The biological production of methane is performed primarily hydrogenotrophically from H2 and CO2 by methanogenic archaea. Hydrogenotrophic methanogenesis also represents a great interest with respect to carbon re-cycling and H2 storage. The most significant carbon source, extremely rich in complex organic matter for microbial degradation and biogenic methane production, is coal. Although interest in enhanced microbial coalbed methane production is continuously increasing globally, limited knowledge exists regarding the exact origins of the coalbed methane and the associated microbial communities, including hydrogenotrophic methanogens. Here, we give an overview of hydrogenotrophic methanogens in coal beds and related environments in terms of their energy production mechanisms, unique metabolic pathways, and associated ecological functions. KW - Coal KW - Methanogenesis KW - Methane KW - Hydrogenotrophic methanogens KW - H2 Y1 - 2024 U6 - https://doi.org/10.1016/j.ijhydene.2023.09.223 SN - 1879-3487 (online) SN - 0360-3199 (print) VL - 52 IS - Part D SP - 1264 EP - 1277 PB - Elsevier CY - New York ER - TY - JOUR A1 - Windmüller, Anna A1 - Schaps, Kristian A1 - Zantis, Frederik A1 - Domgans, Anna A1 - Taklu, Bereket Woldegbreal A1 - Yang, Tingting A1 - Tsai, Chih-Long A1 - Schierholz, Roland A1 - Yu, Shicheng A1 - Kungl, Hans A1 - Tempel, Hermann A1 - Dunin-Borkowski, Rafal E. A1 - Hüning, Felix A1 - Hwang, Bing Joe A1 - Eichel, Rüdiger-A. T1 - Electrochemical activation of LiGaO2: implications for ga-doped garnet solid electrolytes in li-metal batteries JF - ACS Applied Materials & Interfaces N2 - Ga-doped Li7La3Zr2O12 garnet solid electrolytes exhibit the highest Li-ion conductivities among the oxide-type garnet-structured solid electrolytes, but instabilities toward Li metal hamper their practical application. The instabilities have been assigned to direct chemical reactions between LiGaO2 coexisting phases and Li metal by several groups previously. Yet, the understanding of the role of LiGaO2 in the electrochemical cell and its electrochemical properties is still lacking. Here, we are investigating the electrochemical properties of LiGaO2 through electrochemical tests in galvanostatic cells versus Li metal and complementary ex situ studies via confocal Raman microscopy, quantitative phase analysis based on powder X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. The results demonstrate considerable and surprising electrochemical activity, with high reversibility. A three-stage reaction mechanism is derived, including reversible electrochemical reactions that lead to the formation of highly electronically conducting products. The results have considerable implications for the use of Ga-doped Li7La3Zr2O12 electrolytes in all-solid-state Li-metal battery applications and raise the need for advanced materials engineering to realize Ga-doped Li7La3Zr2O12for practical use. KW - LiGaO2 KW - garnet solid electrolyte KW - ga-doping KW - Li7La3Zr2O12 KW - solid-state battery Y1 - 2024 U6 - https://doi.org/10.1021/acsami.4c03729 SN - 39181–3919 VL - 16 IS - 30 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Eichler, Fabian A1 - Balc, Nicolae A1 - Bremen, Sebastian A1 - Nink, Philipp T1 - Investigation of laser powder bed fusion parameters with respect to their influence on the thermal conductivity of 316L samples JF - Journal of Manufacturing and Materials Processing N2 - The thermal conductivity of components manufactured using Laser Powder Bed Fusion (LPBF), also called Selective Laser Melting (SLM), plays an important role in their processing. Not only does a reduced thermal conductivity cause residual stresses during the process, but it also makes subsequent processes such as the welding of LPBF components more difficult. This article uses 316L stainless steel samples to investigate whether and to what extent the thermal conductivity of specimens can be influenced by different LPBF parameters. To this end, samples are set up using different parameters, orientations, and powder conditions and measured by a heat flow meter using stationary analysis. The heat flow meter set-up used in this study achieves good reproducibility and high measurement accuracy, so that comparative measurements between the various LPBF influencing factors to be tested are possible. In summary, the series of measurements show that the residual porosity of the components has the greatest influence on conductivity. The degradation of the powder due to increased recycling also appears to be detectable. The build-up direction shows no detectable effect in the measurement series. KW - Additive manufacturing KW - LPBF KW - SLM KW - Thermal conductivity KW - 316L Y1 - 2024 U6 - https://doi.org/10.3390/jmmp8040166 SN - 2504-4494 N1 - Corresponding author: Fabian Eichler VL - 8 IS - 4 PB - MDPI CY - Basel ER -