TY - RPRT A1 - Stapenhorst, Carolin A1 - Van Den Bergh, Wim A1 - Goliasch, Simon A1 - Kühnle, Christian A1 - Läufer, Jonas A1 - Ring, Jana A1 - Schmalt, Nicola T1 - Roman traces for cross-border identification T2 - Design Strategies for Transforming Cross-Border Regions N2 - The research group focuses on the characteristics in the land-and cityscapes of the Drielanden-zone, which contribute to generate common identities, as well as on those features that trigger differences and specificities of the adjacent countries that enrich the perception of the zone. In this research, the instruments of cartography and land survey system serve to detect and localize the fragmented appearance of relevant historic elements. These analytic procedures help to develop strategies for infrastructures and processes that gradually initiate local forms of cross-border tourism. The architectural research displays how top-down and bottom-up interventions can be combined in order to guarantee a sustainable use and development of the considered area. KW - Building Culture KW - Archeology KW - Cartography KW - Land Survey and Measurement Systems KW - Infrastructures Y1 - 2016 ER - TY - RPRT A1 - Sansom, M. A1 - Lawson, R.M. A1 - Tucho, R. A1 - Kendrick, C. A1 - Ogden, R. A1 - Resalati, S. A1 - Garay, R. A1 - Döring, Bernd A1 - Reger, V. A1 - Gilbert, J. A1 - Heikkinen, J. A1 - Hemmila, K. T1 - Building in active thermal mass into steel structures (BATIMASS) - EUR 28166EN N2 - The main objective of the BATIMASS project was to address how the energy balance in relatively lightweight steel buildings can be improved by building in ‘active thermal mass’ (ATM) into the building fabric. This was achieved through concept design, dynamic thermal modelling and testing of a number of potentially viable systems and concepts. A significant programme of thermal simulation modelling was undertaken utilising the thermally equivalent slab (TES) concept to model the passive thermal capacity effect of profiled, composite metal floor decks. It is apparent from the modelling results that thermal mass is a highly complex phenomenon which is highly dependent upon building type, occupancy patterns, climate and many other aspects of the building design and servicing strategy. The ATM systems developed, both conceptually and for prototype testing, focussed on water-cooled composite slabs, the Cofradal floor system and the phase change material (PCM) Energain. In addition to laboratory testing of prototypes, whole building monitoring was undertaken at the Kubik building in Spain and the RWTH test building in Germany. Advanced thermal modelling was also undertaken to estimate the likely benefits of the ATM concept designs developed and for comparison with the test results. In addition to thermal testing, structural tests were conducted on composite floor specimens incorporating embedded water pipes. This Final Report presents the results of the activities carried out under this RFCS contract RFSR CT 2012 00033. The work carried out is reported in six major sections corresponding to the technical Work Packages of the project. Only summaries of the work carried out are provided in this report; all work undertaken is fully reported in the formal project deliverables. KW - industrial research KW - iron and steel industry KW - research project KW - materials technology KW - resistance of materials KW - steel KW - metal structure KW - ingot KW - building industry KW - research report Y1 - 2016 SN - 978-92-79-63176-4 U6 - https://doi.org/10.2777/25999 SN - 1831-9424 PB - Publications Office of the European Union CY - Luxembourg ER -