TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Dahmen, Markus A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - LAPS-based monitoring of metabolic responses of bacterial cultures in a paper fermentation broth JF - Sensors and Actuators B: Chemical N2 - As an alternative renewable energy source, methane production in biogas plants is gaining more and more attention. Biomass in a bioreactor contains different types of microorganisms, which should be considered in terms of process-stability control. Metabolically inactive microorganisms within the fermentation process can lead to undesirable, time-consuming and cost-intensive interventions. Hence, monitoring of the cellular metabolism of bacterial populations in a fermentation broth is crucial to improve the biogas production, operation efficiency, and sustainability. In this work, the extracellular acidification of bacteria in a paper-fermentation broth is monitored after glucose uptake, utilizing a differential light-addressable potentiometric sensor (LAPS) system. The LAPS system is loaded with three different model microorganisms (Escherichia coli, Corynebacterium glutamicum, and Lactobacillus brevis) and the effect of the fermentation broth at different process stages on the metabolism of these bacteria is studied. In this way, different signal patterns related to the metabolic response of microorganisms can be identified. By means of calibration curves after glucose uptake, the overall extracellular acidification of bacterial populations within the fermentation process can be evaluated. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.snb.2020.128232 SN - 0925-4005 VL - 320 IS - Art. 128232 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dotzauer, Martin A1 - Pfeiffer, Diana A1 - Lauer, Markus A1 - Pohl, Marcel A1 - Mauky, Eric A1 - Bär, Katharina A1 - Sonnleitner, Matthias A1 - Zörner, Wilfried A1 - Hudde, Jessica A1 - Schwarz, Björn A1 - Faßauer, Burkhardt A1 - Dahmen, Markus A1 - Rieke, Christian A1 - Herbert, Johannes A1 - Thrän, Daniela T1 - How to measure flexibility – Performance indicators for demand driven power generation from biogas plants JF - Renewable Energy Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.renene.2018.10.021 SN - 0960-1481 SP - 135 EP - 146 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Röhlen, Desiree A1 - Pilas, Johanna A1 - Dahmen, Markus A1 - Keusgen, Michael A1 - Selmer, Thorsten A1 - Schöning, Michael Josef T1 - Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes JF - Frontiers in Chemistry N2 - Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes. Y1 - 2018 U6 - http://dx.doi.org/10.3389/fchem.2018.00284 IS - 6 PB - Frontiers CY - Lausanne ER - TY - JOUR A1 - Rieke, Christian A1 - Stollenwerk, Dominik A1 - Dahmen, Markus A1 - Pieper, Martin T1 - Modeling and optimization of a biogas plant for a demand-driven energy supply JF - Energy N2 - Due to the Renewable Energy Act, in Germany it is planned to increase the amount of renewable energy carriers up to 60%. One of the main problems is the fluctuating supply of wind and solar energy. Here biogas plants provide a solution, because a demand-driven supply is possible. Before running such a plant, it is necessary to simulate and optimize the process. This paper provides a new model of a biogas plant, which is as accurate as the standard ADM1 model. The advantage compared to ADM1 is that it is based on only four parameters compared to 28. Applying this model, an optimization was installed, which allows a demand-driven supply by biogas plants. Finally the results are confirmed by several experiments and measurements with a real test plant. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.energy.2017.12.073 SN - 0360-5442 VL - 145 SP - 657 EP - 664 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jablonowski, Nicolai David A1 - Kollmann, Tobias A1 - Nabel, Moritz A1 - Damm, Tatjana A1 - Klose, Holger A1 - Müller, Michael A1 - Bläsing, Marc A1 - Seebold, Sören A1 - Krafft, Simone A1 - Kuperjans, Isabel A1 - Dahmen, Markus A1 - Schurr, Ulrich T1 - Valorization of Sida (Sida hermaphrodita) biomass for multiple energy purposes JF - GCB [Global Change Biology] Bioenergy N2 - The performance and biomass yield of the perennial energy plant Sida hermaphrodita (hereafter referred to as Sida) as a feedstock for biogas and solid fuel was evaluated throughout one entire growing period at agricultural field conditions. A Sida plant development code was established to allow comparison of the plant growth stages and biomass composition. Four scenarios were evaluated to determine the use of Sida biomass with regard to plant development and harvest time: (i) one harvest for solid fuel only; (ii) one harvest for biogas production only; (iii) one harvest for biogas production, followed by a harvest of the regrown biomass for solid fuel; and (iv) two consecutive harvests for biogas production. To determine Sida's value as a feedstock for combustion, we assessed the caloric value, the ash quality, and melting point with regard to DIN EN ISO norms. The results showed highest total dry biomass yields of max. 25 t ha⁻¹, whereas the highest dry matter of 70% to 80% was obtained at the end of the growing period. Scenario (i) clearly indicated the highest energy recovery, accounting for 439 288 MJ ha⁻¹; the energy recovery of the four scenarios from highest to lowest followed this order: (i) ≫ (iii) ≫ (iv) > (ii). Analysis of the Sida ashes showed a high melting point of >1500 °C, associated with a net calorific value of 16.5–17.2 MJ kg⁻¹. All prerequisites for DIN EN ISO norms were achieved, indicating Sida's advantage as a solid energy carrier without any post-treatment after harvesting. Cell wall analysis of the stems showed a constant lignin content after sampling week 16 (July), whereas cellulose had already reached a plateau in sampling week 4 (April). The results highlight Sida as a promising woody, perennial plant, providing biomass for flexible and multipurpose energy applications. Y1 - 2016 U6 - http://dx.doi.org/10.1111/gcbb.12346 SN - 1757-1707 (online) SN - 1757-1693 (print) N1 - Special Issue: Perennial biomass crops for a resource constrained world VL - 9 IS - 1 SP - 202 EP - 214 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Stollenwerk, Dominik A1 - Rieke, C. A1 - Dahmen, Markus A1 - Pieper, Martin T1 - Biogas Production Modelling : A Control System Engineering Approach T2 - IOP Conference Series: Earth and Environmental Science. Bd. 32 Y1 - 2016 U6 - http://dx.doi.org/10.1088/1755-1315/32/1/012008 SN - 1755-1315 N1 - ICARET 2016, International Conference on Advances in Renewable Energy and Technologies, Putrajaya, MY, Feb 23-25, 2016 SP - 012008/1 EP - 012008/4 ER -