TY - CHAP A1 - Behrens, Jörg A1 - Frentzel, Ralf A1 - Kern, Alexander T1 - Simulation der transienten Spannungsverläufe im Eigenbedarfsnetz eines Großkraftwerks bei einem kraftwerksnahen Blitzeinschlag in die Hochspannungs-Freileitung T1 - Simulation of transient voltage curve of a house-load operation net-work of large power plant by a lightning strike in a high-voltage over-head line closed to the power plant N2 - 8. VDE/ABB-Blitzschutztagung, 29. - 30. Oktober 2009 in Neu-Ulm. Blitzschutztagung <8, 2009, Neu-Ulm> Berlin : VDE Verl. 2009 Großkraftwerke können durch Blitzentladungen mit potentiellen Auswirkungen auf deren Verfügbarkeit und Sicherheit gefährdet werden. Ein sehr spezielles Szenario, welches aus aktuellem Anlass zu untersuchen war, betrifft den kraftwerksnahen Blitzeinschlag in die Hochspannungs-Freileitung am Netzanschluss der Anlage. Wird nun noch ein sogenannter Schirmfehler unterstellt, d.h. der direkte Blitzeinschlag erfolgt in ein Leiterseil des Hoch- bzw. Höchstspannungsnetzes und nicht in das darüber gespannte Erdseil, so bedeutet dies eine extreme elektromagnetische Einwirkung. Der vorliegende Beitrag befasst sich mit der Simulation eines solchen Blitzeinschlages und dessen Auswirkungen auf den Netzanschluss und die Komponenten der elektrischen Eigenbedarfsanlagen eines Kraftwerks auf den unterlagerten Spannungsebenen. Die dabei gewonnenen Erkenntnisse lassen sich ohne Einschränkungen auf Industrieanlagen mit Mittelspannungs-Netzanschluss und ohne eigener Stromversorgung übertragen. N2 - Lightning discharge can endanger large power plants with potential influence on their availability and reliability. A very special scenario, which was currently to analyse, is the lightning strike close to the high-voltage overhead line at the grid of the power plant. Supposing a failure of shielding and that the lightning strike goes directly into the line then the elec-tromagnetic effect is extremely high. The following article gives attention to the simulation of lightning strike and their effects to the connection with the grid and the components of the house-load operation of a large power plant especially to the lower voltage level sections. These results are transferable to industrial plants which have no own power supply. KW - Blitzschutz KW - Blitzeinschlag KW - lightning strike Y1 - 2009 SN - 978-3-8007-3197-8 ER - TY - CHAP A1 - Kern, Alexander A1 - Beierl, Ottmar A1 - Zischank, Wolfgang T1 - Calculation of the separation distance according to IEC 62305-3: 2006-10 - Remarks for the application and simplified methods N2 - [Paper of the X International Symposium on Lightning Protection 9th - 13th November, 2009 - Curitiba, Brazil. 6 pages] The international standard IEC 62305-3, published in 2006, requires as an integral part of the lightning protection system (LPS) the consideration of a separation distance between the conductors of the LPS and metal and electrical installations inside the structure to be protected. IEC 62305-3 gives two different methods for this calculation: a standard, simplified approach and a more detailed approach, which differ especially regarding the treatment of the current sharing effect on the LPS conductors. Hence, different results for the separation distance are possible, leading to some discrepancies in the use of the standard. The standard approach defined in the main part (Clause 6.3) and in Annex C of the standard in some cases may lead to a severe oversizing of the required separation distance. The detailed approach described in Annex E naturally gives more correct results. However, a calculation of the current sharing amongst all parts of the air-termination and downconductor network is necessary, in many cases requiring the use of network analysis programs. In this paper simplified methods for the assessment of the current sharing are presented, which are easy to use as well as sufficiently adequate. KW - Blitzschutz KW - Lightning protection Y1 - 2009 N1 - Paper in: [10. International Symposium on Lightning Protection 9. 13. November 2009, Curitiba, Brasilien. 6 Seiten] ER - TY - JOUR A1 - Wettingfeld, Jürgen A1 - Kern, Alexander A1 - Krämer, Heinz-Josef A1 - Thormählen, Reyno T1 - International anerkannte Blitzschutznormen : Ausgewogener und sicherer Schutz N2 - Die Einleitung zur Norm DIN EN 62305-3 beschreibt klar und ein - deutig: Der vorliegende Teil der IEC 62305 behandelt den Schutz von baulichen Anlagen gegen materielle Schäden und den Schutz von Personen gegen Verletzungen durch Berührungs- und Schrittspannungen. Als das wesentlichste und effektivste Mittel zum Schutz von baulichen Anlagen gegen materielle Schäden gilt das Blitz - schutzsystem (LPS). KW - Blitzschutz KW - lightning protection Y1 - 2009 PB - Fachhochschule Aachen CY - Aachen ER - TY - CHAP A1 - Kern, Alexander T1 - Risikomanagement : Abschätzung des Schadensrisikos für bauliche Anlagen - Die neue Vornorm DIN V VDE V 0185 Teil 2 : 2002 N2 - Alle Unternehmen sind vielfältigen Risiken ausgesetzt, die Finanz- und Betriebsbereiche einschließlich Dienstleistungen betreffen können. Die Firmen müssen üblicherweise Risiken eingehen, um im Wettbewerb bestehen zu können. Entscheidend ist, dass man sich über die Risiken bewusst ist, diese einschätzen und kontrollieren kann. Falsche Einschätzungen, Versäumnisse und Fehlentscheidungen können empfindliche finanzielle Schäden bis hin zum Totalverlust nach sich ziehen. Ein effektives Risikomanagement ist heute als wichtiger Sicherheitsfaktor anzusehen und sollte zur strategischen Unternehmensführung gehören. Ein vorausschauendes Risikomanagement beinhaltet, Risiken für das Unternehmen zu kalkulieren. Es liefert Entscheidungsgrundlagen, um diese Risiken zu begrenzen und es macht transparent, welche Risiken sinnvollerweise über Versicherungen abgedeckt werden sollten. Beim Versicherungsmanagement ist jedoch zu bedenken, dass zur Erreichung bestimmter Ziele Versicherungen nicht geeignet sind (z.B. Erhaltung der Lieferfähigkeit). Eintrittswahrscheinlichkeiten bestimmter Risiken lassen sich durch Versicherungen nicht verändern. Bei Unternehmen, die mit umfangreichen elektronischen Einrichtungen produzieren oder Dienstleistungen erbringen (und das sind heutzutage wohl die meisten), muss auch das Risiko durch Blitzeinwirkungen besondere Berücksichtigung finden. Dabei ist zu beachten, dass der Schaden aufgrund der Nicht-Verfügbarkeit der elektronischen Einrichtungen und damit der Produktion bzw. der Dienstleistung und ggf. der Verlust von Daten den Hardware-Schaden an der betroffenen Anlage oft bei weitem übersteigt. Im Blitzschutz gewinnt innovatives Denken in Schadensrisiken langsam an Bedeutung. Risikoanalysen haben die Objektivierung und Quantifizierung der Gefährdung von baulichen Anlagen und ihrer Inhalte durch direkte und indirekte Blitzeinschläge zum Ziel. Seinen Niederschlag hat dieses neue Denken in der neuen deutschen Norm DIN V 0185-2 VDE V 0185 Teil 2 gefunden. Die hier vorgegebene Risikoanalyse gewährleistet, dass ein für alle Beteiligten nachvollziehbares Blitzschutz-Konzept erstellt werden kann, das technisch und wirtschaftlich optimiert ist, d.h. bei möglichst geringem Aufwand den notwendigen Schutz gewährleisten kann. Die sich aus der Risikoanalyse ergebenden Schutzmaßnahmen sind dann in den weiteren Normenteilen der neuen Reihe VDE V 0185 detailliert beschrieben. KW - Blitzschutz KW - Risikomanagement KW - Risikoabschätzung KW - Versicherung KW - Lightning protection KW - Risk management KW - Risk assessment ; Insurance Y1 - 2002 ER - TY - JOUR A1 - Kern, Alexander T1 - Risikomanagement für den Blitzschutz - Abschätzung des Blitzschadensrisikos nach der neuen Vornorm VDE V 0185 Teil 2 : 2002 N2 - Ein vorausschauendes Risikomanagement beinhaltet, Risiken zu kalkulieren. Es liefert Entscheidungsgrundlagen, um diese Risiken zu begrenzen und es macht transparent,welche Risiken sinnvoll über Versicherungen abgedeckt werden sollten. Bei Unternehmen, die mit umfangreichen elektronischenEinrichtungen produzieren oder Dienstleistungen erbringen (und das sind heutzutage wohl die meisten), muss auch das Risiko durch Blitzeinwirkungen besondere Berücksichtigung finden. Dabei ist zu beachten, dass der Schaden aufgrund der Nichtverfügbarkeit der elektronischen Einrichtungen und damit derProduktion bzw. der Dienstleistung und ggf. der Verlust von Daten den Hardwareschaden an der betroffenen Anlage oft bei weitem übersteigt. KW - Blitzschutz KW - Risikomanagement KW - Risikoabschätzung KW - Lightning protection KW - Risk management KW - Risk assessment Y1 - 2003 ER - TY - CHAP A1 - Kern, Alexander T1 - Abschätzung des Blitzschadensrisikos für bauliche Anlagen - Die neue Bestimmung DIN V VDE V 0185 Teil 2 : 2002 - Allgemeines, Abschätzungsverfahren, Berechnungsbeispiele N2 - Ein vorausschauendes Risikomanagement beinhaltet, Risiken für das Unternehmen zu kalkulieren. Es liefert Entscheidungsgrundlagen, um diese Risiken zu begrenzen und es macht transparent, welche Risiken sinnvollerweise über Versicherungen abgedeckt werden sollten. Beim Versicherungsmanagement ist jedoch zu bedenken, dass zur Erreichung bestimmter Ziele Versicherungen nicht immer geeignet sind (z.B. Erhaltung der Lieferfähigkeit). Eintrittswahrscheinlichkeiten bestimmter Risiken lassen sich durch Versicherungen nicht verändern. Bei Unternehmen, die mit umfangreichen elektronischen Einrichtungen produzieren oder Dienstleistungen erbringen (und das sind heutzutage wohl die meisten), muss auch das Risiko durch Blitzeinwirkungen besondere Berücksichtigung finden. Dabei ist zu beachten, dass der Schaden aufgrund der Nicht-Verfügbarkeit der elektronischen Einrichtungen und damit der Produktion bzw. der Dienstleistung und ggf. der Verlust von Daten den Hardware-Schaden an der betroffenen Anlage oft bei weitem übersteigt. Im Blitzschutz gewinnt innovatives Denken in Schadensrisiken langsam an Bedeutung. Risikoanalysen haben die Objektivierung und Quantifizierung der Gefährdung von baulichen Anlagen und ihrer Inhalte durch direkte und indirekte Blitzeinschläge zum Ziel. Seinen Niederschlag hat dieses neue Denken in der neuen deutschen Vornorm DIN V 0185-2 VDE V 0185 Teil 2 [1] gefunden. Die hier vorgegebene Risikoanalyse gewährleistet, dass ein für alle Beteiligten nachvollziehbares Blitzschutz-Konzept erstellt werden kann, das technisch und wirtschaftlich optimiert ist, d.h. bei möglichst geringem Aufwand den notwendigen Schutz gewährleisten kann. Die sich aus der Risikoanalyse ergebenden Schutzmaßnahmen sind dann in den weiteren Normenteilen der neuen Reihe VDE V 0185 [2, 3] detailliert beschrieben. KW - Blitzschutz KW - Risikomanagement KW - Risikoabschätzung KW - Lightning protection KW - Risk management KW - Risk assessment Y1 - 2003 ER - TY - CHAP A1 - Kern, Alexander A1 - Neskakis, Apostolos A1 - Müller, Klaus-Peter T1 - Blitzschutzkonzept für eine netz-autarke Hybridanlage am Beispiel der Anlage VATALI auf Kreta N2 - Netz-autarke Anlagen bestehen üblicherweise aus einer oder mehreren Photovoltaik- (PV-) Anlagen, ggf. auch Solarthermie- (ST-) Anlagen und einem oder mehreren kleineren Windgeneratoren (sie werden deshalb auch als Hybridanlagen bezeichnet) und werden vor allem in Gegenden mit sehr schlechter öffentlicher Energieversorgung eingesetzt, d.h. insbesondere in rel. dünn bewohnten Gebieten und in Entwicklungsländern. Der Blitzschutz von netz-autarken Hybridanlagen ist ein bislang noch vergleichsweise unzureichend bearbeitetes Fachgebiet. Für große Windenergie-Anlagen (WEA) wurde in den letzten Jahren eine Zahl von FuE-Projekten durchgeführt, zum Großteil finanziert durch die öffentliche Hand, zum kleineren Teil auch durch die Industrie, d.h. die WEAHersteller. Dabei wurden bestehende Defizite im Design der WEA festgestellt und Maßnahmen vorgeschlagen, die vor den mechanischen Zerstörungen insbesondere des Rotors und vor den Störungen und Zerstörungen an den elektrischen / elektronischen Systemen der WEA weitgehend Schutz bieten [1, 2, 3]. Der Stand-der- Normung ist im Entwurf DIN VDE 0127 Teil 24 „Blitzschutz für Windenergieanlagen“ (dt. Übersetzung des internationalen Drafts IEC 61400-24 „Wind turbine generator systems; Part 24: Lightning Protection“) dokumentiert [4]. Die Maßnahmen sind allerdings insbesondere für größere WEA vorgesehen; im Falle kleinerer WEA lassen sie sich nur bedingt umsetzen. Trotzdem sind auch kleinere WEA rel. stark blitzeinschlaggefährdet, wenn sie auf einer Bergkuppe o.ä. platziert werden. Für solche kleinere WEA, wie sie bei Hybridanlagen üblicherweise Verwendung finden, müssen die Blitzschutzmaßnahmen aus der DIN VDE 0127 Teil 24 angepasst werden. Für PV- und ST-Anlagen ist eine entsprechende Blitzschutz-Norm noch nicht in Sicht. Hier ist vor allem der Schutz gegen direkte Blitzeinschläge in die Anlage bzw. die Gebäude noch nicht ausreichend beachtet. Blitzfangeinrichtungen sind oft nicht vorgesehen. In aller Regel hat man dabei bisher eine Ausführungsform des Blitzschutzes realisiert, die primär einen Ferneinschlag berücksichtigt und die dabei entstehenden induzierten, rel. energieschwachen Überspannungen durch schwächere Schutzelemente wie Rückstromdioden, Bypassdioden und zum Teil thermisch überwachte Varistoren begrenzt [5, 6, 7]. Diese Schutzelemente können allerdings bei Naheinschlägen bzw. Direkteinschlägen überlastet und damit zerstört werden. Darüber hinaus können Nahoder Direkteinschläge auch zur Schwächung der elektrischen Festigkeit der PVModulisolierung führen. Die Folge davon sind lokale extreme Wärmeentwicklungen, die sogar ein Schmelzen von Glas (sekundärer Langzeiteffekt) hervorrufen könnten. Bei einem Blitzeinschlag in die netz-autarke Hybridanlage VATALI auf Kreta im Jahre 2000 wurden sowohl einige mechanische wie auch elektrische Komponenten der Anlage zerstört bzw. zum Teil schwer beschädigt. Die Anlage VATALI besaß zum Zeitpunkt des Blitzeinschlags keinen wirksamen Blitzschutz. Der Gesamtschaden der Hardware belief sich auf ca. 60.000,- EURO. Die exponierte Stellung der Anlage auf einer Bergspitze stellte und stellt nach wie vor ein enormes Blitzeinschlag-Risiko dar, so dass auch zukünftig mit Blitzeinwirkungen gerechnet werden muss. Die Anlage wurde inspiziert, blitzschutz-technische Erfordernisse definiert und daraus Ertüchtigungsmaßnahmen abgeleitet, die mit überschaubarem Aufwand realisierbar sind. KW - Blitzschutz KW - Hybridanlage KW - Regenerative Energieanlagen KW - Lightning protection KW - renewable energy KW - hybrid system Y1 - 2001 ER - TY - CHAP A1 - Kern, Alexander A1 - Meppelink, Jan T1 - Neue Möglichkeiten elektrischer Anschlüsse an die Bewehrung und Untersuchung der Wirkung von Blitzströmen in bewehrtem Beton N2 - Im Rahmen eines modernen Blitzschutzsystems für Stahlbeton-Bauten bietet es sich an, die Betonbewehrung zu benutzen: - Sie kann die Funktionen der Ableitungseinrichtungen und des Blitzschutz- Potentialausgleichs bei einem klassischen Gebäude-Blitzschutz übernehmen [1]; - Sie kann, ggf. bei entsprechender Ergänzung, als ein geschlossener Käfig ausgebildet werden und damit eine deutliche Reduzierung der Belastung elektrischer / elektronischer Systeme durch blitzinduzierte elektromagnetische Felder erbringen (LEMP-Schutz [2]). Die Nutzung der Bewehrung ist dabei grundsätzlich gleichermaßen bei Neubauten wie auch bei Ertüchtigungen möglich und sinnvoll. So stellt die Nutzung der Bewehrung beispielsweise im Bereich von Großkraftwerken eine wesentliche Ertüchtigungsmaßnahme für den Blitzschutz elektrischer und elektronischer Einrichtungen dar: - Einerseits wird der Blitzschutz-Potentialausgleich durch den Anschluss metallener Einrichtungen wie Elektronik-Schränke, Kabeltrag-Konstruktionen, Rohrleitungen, etc. an die Bewehrung deutlich verbessert. - Andererseits kann bei größeren Gebäuden die elektromagnetische Schirmwirkung durch die elektrische Überbrückung von vorhandenen Dehnfugen bei Stahlbetonbauten optimiert werden. Diese Dehnfugen sind teilweise nur unzureichend überbrückt, so dass bei Blitzeinschlag in das betreffende oder ein benachbartes Gebäude an Kabelstrecken, die über die Dehnfuge hinwegführen, rel. hohe Spannungen induziert werden können [2, 3]. Die sich um das gesamte Gebäude herumziehende oder zwischen zwei Gebäuden befindliche Dehnfuge muss deshalb im Abstand von maximal einigen Metern überbrückt werden. Im Falle von Blitzschutz-Ertüchtigungen in vorhandenen Gebäuden wird bisher an jeder geplanten Anschlussstelle die Bewehrung großflächig (∅ wenige 10 cm) freigelegt, dort ein elektrischer Anschluss zu dem Bewehrungsstab hergestellt, z.B. mittels eines Erdungsfestpunkts, und dann die Betonoberfläche wieder geschlossen. Je nach prognostizierter Strombelastung wird teilweise versucht, den über den Anschluss fließenden Strom bereits auf mehrere Bewehrungsstäbe zu verteilen. Dazu sind entweder die kreuzenden Stäbe zu verschweißen oder es sind direkt Anschlüsse an zwei Bewehrungsstäbe herzustellen. All dieses bedeutet einen hohen Aufwand bei der Freilegung der Bewehrung und auch wieder bei der Schließung der entstandenen Betonlöcher. Es soll deshalb hier untersucht werden, ob es beispielsweise zum Zwecke des Blitzschutz-Potentialausgleichs und auch zur Überbrückung von Dehnfugen ausreichend ist, den Anschluss an die Bewehrung nach einfachen Verfahren nur jeweils an einen Bewehrungsstab herzustellen. Damit würde der finanzielle und administrative Aufwand an Betonarbeiten deutlich reduziert. Die hier dargestellten Verfahren sind dabei insbesondere für den Einsatz bei Blitzschutz-Ertüchtigungen in bestehenden Gebäuden vorgesehen. Abschließend sollen deshalb die Möglichkeiten zur Prüfung korrekter Anschlüsse, die Grenzen der Verfahren sowie auch die Grenzen der Anwendbarkeit bei Neuanlagen diskutiert werden. KW - Blitzschutz KW - Stahlbetonkonstruktion KW - Lightning Protection KW - reinforced concrete Y1 - 2001 ER - TY - JOUR A1 - Kern, Alexander A1 - Krichel, Frank T1 - Überlegungen zum Blitzschutzkonzept für regenerative Energieanlagen N2 - Dem Blitzschutz von Anlagen der regenerativen Energien kommt in Zukunft eine steigende Bedeutung zu. Dabei ist es notwendig zu berücksichtigen, dass die Schutzmaßnahmen technisch/wirtschaftlich ausgewogen sind. Erbauer, Besitzer oder Benutzer von netzautarken Hybridanlagen haben zu entscheiden, ob die Anlage einen Schutz braucht oder nicht. Um diese Entscheidung zu fällen, ist eine Risikoanalyse als erster Schritt sinnvoll. Diese muss dabei die für die Hybridanlage relevanten Schadenarten und spezifischen Parameter, Werte und Randbedingungen mit einbeziehen. Dazu ist die Hilfe eines Blitzschutzexperten sehr hilfreich. KW - Alternative Energiequelle KW - Energietechnische Anlage KW - Blitzschutz KW - Blitzschutz KW - Regenerative Energieanlagen KW - Lightning protection KW - renewable energy Y1 - 2003 ER - TY - CHAP A1 - Kern, Alexander A1 - Krämer, Heinz-Josef T1 - Blitzschutzkonzept für eine bauliche Anlage mit Stahlkonstruktion und metallenen Wänden N2 - Bauliche Anlagen mit Stahlkonstruktionen (bzw. auch Stahlbetonskelett- Konstruktionen) und metallenen Wänden sind bereits in sehr großer Zahl errichtet. Dazu gehören kleinere bis größere Lagerhallen ebenso wie Einkaufszentren. Sie zeichnen sich durch große Flexibilität, einfache Planung, kurze Bauzeit und rel. geringe Kosten aus. Auch in der nahen Zukunft ist deshalb mit Planung und Errichtung weiterer solcher baulicher Anlagen zu rechnen. Abhängig von der Nutzung der Hallen sind auch mehr oder weniger umfangreiche elektrische und elektronische Systeme vorhanden, die wichtige Funktionen sicherstellen müssen. Der Blitzschutz für diese baulichen Anlagen sollte sich also nicht nur im „klassischen“ Gebäude-Blitzschutz nach DIN V 0185-3 VDE V 0185 Teil 3 [1] erschöpfen; ein Ergänzung hin zu einem sinnvollen Grundschutz der elektrischen und elektronischen Systeme nach DIN V 0185-4 VDE V 0185 Teil 4 [2] ist anzuraten. Im folgenden Beitrag wird ein Konzept vorgestellt, mit dem ein hochwertiger Blitzschutz sowohl der baulichen Anlage und der darin befindlichen Personen, als auch der elektrischen und elektronischen Systeme verwirklicht werden kann. Insbesondere bei großflächigen Hallen stellen sich dabei besondere Anforderungen. Das Konzept und die zugehörigen blitzschutz-technischen Maßnahmen können drei Hauptbereichen zugeordnet werden: - Äußerer Blitzschutz; - Innerer Blitzschutz; - weitergehende besondere Maßnahmen. Das Konzept sowie die Maßnahmen werden allgemein beschrieben und teilweise anhand einer ausgeführten Anlage mit Fotos beispielhaft dokumentiert. KW - Blitzschutz KW - Stahlbetonkonstruktion KW - Lightning protection KW - reinforced concrete Y1 - 2003 ER -