TY - GEN A1 - Eickmann, Matthias A1 - Esch, Thomas A1 - Funke, Harald A1 - Abanteriba, Sylvester A1 - Roosen, Petra T1 - Biofuels in Aviation – Safety Implications of Bio-Ethanol Usage in General Aviation Aircraft N2 - Up in the clouds and above fuels and construction materials must be very carefully selected to ensure a smooth flight and touchdown. Out of around 38,000 single and dual-engined propeller aeroplanes, roughly a third are affected by a new trend in the fuel sector that may lead to operating troubles or even emergency landings: The admixture of bio-ethanol to conventional gasoline. Experiences with these fuels may be projected to alternative mixtures containing new components. Y1 - 2014 N1 - 2. International Conference of the Cluster of Excellence Tailor-Made Fuels from Biomass, Aachen 2013 ER - TY - CHAP A1 - Funke, Harald A1 - Haj Ayed, A. A1 - Kusterer, K. A1 - Keinz, Jan A1 - Kazari, M. A1 - Kitajima, J. A1 - Horikawa, A. A1 - Okada, K. T1 - Numerical Study on Increased Energy Density for the DLN Micromix Hydrogen Combustion Principle T2 - Combustion, Fuels and Emissions (ASME Turbo Expo 2014: Turbine Technical Conference and Exposition : Düsseldorf, Germany, June 16–20, 2014 ; Vol. 4A) Y1 - 2014 SN - 978-0-7918-4568-4 N1 - Paper No. GT2014-25848 SP - V04AT04A057 PB - ASME CY - New York, N.Y. ER - TY - JOUR A1 - Funke, Harald A1 - Dickhoff, J. A1 - Keinz, Jan A1 - Anis, H. A. A1 - Parente, A. A1 - Hendrick, P. T1 - Experimental and numerical study of the micromix combustion principle applied for hydrogen and hydrogen-rich syngas as fuel with increased energy density for industrial gas turbine applications JF - Energy procedia N2 - The Dry Low NOx (DLN) Micromix combustion principle with increased energy density is adapted for the industrial gas turbine APU GTCP 36-300 using hydrogen and hydrogen-rich syngas with a composition of 90%-Vol. hydrogen (H₂) and 10%-Vol. carbon-monoxide (CO). Experimental and numerical studies of several combustor geometries for hydrogen and syngas show the successful advance of the DLN Micromix combustion from pure hydrogen to hydrogen-rich syngas. The impact of the different fuel properties on the combustion principle and aerodynamic flame stabilization design laws, flow field, flame structure and emission characteristics is investigated by numerical analysis using a hybrid Eddy Break Up combustion model and validated against experimental results. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.egypro.2014.12.201 SN - 1876-6102 (E-Journal) IS - 61 SP - 1736 EP - 1739 PB - Elsevier CY - Amsterdam ER -