TY - CHAP A1 - Gkatzogias, Konstantinos A1 - Veljkoviv, Ana A1 - Pohoryles, Daniel A. A1 - Tsionis, Georgios A1 - Bournas, Dionysios A. A1 - Crowley, Helen A1 - Norlén, Hedvig A1 - Butenweg, Christoph A1 - Gervasio, Helena A1 - Manfredi, Vincenzo A1 - Masi, Angelo A1 - Zaharieva, Roumiana ED - Gkatzogias, Konstantinos ED - Tsionis, Georgios T1 - Policy practice and regional impact assessment for building renovation T2 - REEBUILD Integrated Techniques for the Seismic Strengthening & Energy Efficiency of Existing Buildings N2 - The work presented in this report provides scientific support to building renovation policies in the EU by promoting a holistic point of view on the topic. Integrated renovation can be seen as a nexus between European policies on disaster resilience, energy efficiency and circularity in the building sector. An overview of policy measures for the seismic and energy upgrading of buildings across EU Member States identified only a few available measures for combined upgrading. Regulatory framework, financial instruments and digital tools similar to those for energy renovation, together with awareness and training may promote integrated renovation. A framework for regional prioritisation of building renovation was put forward, considering seismic risk, energy efficiency, and socioeconomic vulnerability independently and in an integrated way. Results indicate that prioritisation of building renovation is a multidimensional problem. Depending on priorities, different integrated indicators should be used to inform policies and accomplish the highest relative or most spread impact across different sectors. The framework was further extended to assess the impact of renovation scenarios across the EU with a focus on priority regions. Integrated renovation can provide a risk-proofed, sustainable, and inclusive built environment, presenting an economic benefit in the order of magnitude of the highest benefit among the separate interventions. Furthermore, it presents the unique capability of reducing fatalities and energy consumption at the same time and, depending on the scenario, to a greater extent. Y1 - 2022 SN - 978-92-76-60454-9 U6 - http://dx.doi.org/10.2760/883122 SN - 1831-9424 SP - 1 EP - 68 PB - Publications Office of the European Union CY - Luxembourg ER - TY - CHAP A1 - Weber, Felix A1 - Bomholt, Frederik A1 - Butenweg, Christoph ED - Bergmeister, Konrad ED - Fingerloos, Frank ED - Wörner, Johann-Dietrich T1 - Erdbeben- und Schwingungsschutz von Bauwerken T2 - 2023 BetonKalender: Wasserundurchlässiger Beton, Brückenbau N2 - Dieser Beitrag beschreibt die herkömmlichen Maßnahmen wie die Kapazitätsbemessung der Tragwerksstruktur, die Isolation des Bauwerks mittels Basisisolatoren, die Dämpfungserhöhung der Struktur mittels Inter-Story-Dämpfern und die Schwingungsreduktion mittels Schwingungstilgern gegen Einwirkungen durch Erdbeben, Wind, Verkehr und Personen auf die Bauwerke. Ergänzend wird die erdbebengerechte Auslegung und Isolation von nichttragenden Bauteilen behandelt. Für die betrachteten Systeme werden die Bewegungsdifferenzialgleichungen unter Berücksichtigung der wesentlichen Nichtlinearitäten angegeben. Die vorgestellten Weiterentwicklungen in den Bereichen der Basisisolatoren, Dämpfern und Schwingungstilgern zeigen, dass das modellbasierte Design mittels Simulation ein sehr effektives, ökonomisches und dank der heutigen Computerleistung auch zeiteffizientes Werkzeug darstellt. Y1 - 2022 SN - 9783433611180 SN - 9783433033753 U6 - http://dx.doi.org/10.1002/9783433611180.ch16 N1 - Beton-Kalender, 112. Jahrgang (2023): Wasserundurchlässiger Beton, Brückenbau ausleihbar unter der Sig. 11 XCF 3-2023,2 SP - 779 EP - 859 PB - Ernst & Sohn CY - Berlin ER - TY - CHAP A1 - Butenweg, Christoph A1 - Gellert, Christoph A1 - Meyer, Udo T1 - Erdbebenbemessung bei Mauerwerksbauten T2 - Mauerwerk Kalender 2021: Kunststoffverankerungen Digitalisierung im Mauerwerksbau N2 - Der vorliegende Beitrag stellt den seismischen Nachweis von Mauerwerksbauten in Deutschland auf Grundlage der DIN EN 1998‐1/NA vor, wobei auch die wesentlichen Änderungen zu der Norm DIN 4149 vergleichend erläutert werden. Vorgestellt werden die Definition der Erdbebeneinwirkung, das seismische Verhalten von Mauerwerksbauten und die Erläuterung der Rechenverfahren. Darauf aufbauend wird die Anwendung an drei Praxisbeispielen demonstriert. Y1 - 2021 SN - 9783433032930 SN - 9783433610732 U6 - http://dx.doi.org/10.1002/9783433610732.ch12 SP - 329 EP - 355 PB - Ernst & Sohn CY - Berlin ER - TY - CHAP A1 - Butenweg, Christoph A1 - Ebenau, C. T1 - Entwicklung eines objekt-orientierten FE-Programms T2 - Forum Bauinformatik - Junge Wissenschaftler forschen, Cottbus '96 Y1 - 1996 SN - 978-3-18-313504-2 N1 - Fortschritt-Berichte VDI : Reihe 4, Bauingenieurwesen, Band 135 SP - 60 EP - 65 PB - VDI-Verlag CY - Düsseldorf ER - TY - CHAP A1 - Butenweg, Christoph T1 - Passt, wackelt und hat Luft: Mauerwerksbauten aus Leichtbeton in Erdbebengebieten T2 - Beton-Bauteile, 65. Ausgabe (2017): Entwerfen - Planen - Ausführen Y1 - 2017 SN - 978-3-7625-3676-5 N1 - gedruckt in der Bereichsbibliothek Bayernallee unter der Signatur 11 XCF 81-2017 vorhanden SP - 136 EP - 140 PB - Bauverl. CY - Gütersloh ER - TY - CHAP A1 - Butenweg, Christoph A1 - Kubalski, Thomas A1 - Marinkovic, Marko A1 - Pfetzing, Thomas A1 - Ismail, Mohammed A1 - Fehling, Ekkehard T1 - Ausfachungen aus Ziegelmauerwerk T2 - Mauerwerk-Kalender 2016: Baustoffe, Sanierung, Eurocode-Praxis Y1 - 2016 SN - 978-3-433-03131-5 PB - Ernst & Sohn CY - Berlin ER - TY - CHAP A1 - Butenweg, Christoph A1 - Bollenbeck, S. T1 - Mauerwerksbauten unter Erdbebenbelastung T2 - Bauwerke und Erdbeben Y1 - 2003 SN - 3-528-02574-3 SP - 385 EP - 397 PB - Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Giresini, Linda A1 - Butenweg, Christoph T1 - Earthquake resistant design of structures according to Eurocode 8 T2 - Structural Dynamics with Applications in Earthquake and Wind Engineering N2 - The chapter initially provides a summary of the contents of Eurocode 8, its aim being to offer both to the students and to practising engineers an easy introduction into the calculation and dimensioning procedures of this earthquake code. Specifically, the general rules for earthquake-resistant structures, the definition of design response spectra taking behaviour and importance factors into account, the application of linear and non-linear calculation methods and the structural safety verifications at the serviceability and ultimate limit state are presented. The application of linear and non-linear calculation methods and corresponding seismic design rules is demonstrated on practical examples for reinforced concrete, steel and masonry buildings. Furthermore, the seismic assessment of existing buildings is discussed and illustrated on the example of a typical historical masonry building in Italy. The examples are worked out in detail and each step of the design process, from the preliminary analysis to the final design, is explained in detail. KW - Seismic design KW - Eurocode 8 KW - Design examples KW - Response spectrum KW - Pushover analysis Y1 - 2019 SN - 978-3-662-57550-5 (Online) SN - 978-3-662-57548-2 (Print) U6 - http://dx.doi.org/10.1007/978-3-662-57550-5_4 SP - 197 EP - 358 PB - Springer CY - Berlin ER - TY - CHAP A1 - Butenweg, Christoph A1 - Holtschoppen, Britta T1 - Seismic design of structures and components in industrial units T2 - Structural Dynamics with Applications in Earthquake and Wind Engineering N2 - Industrial units consist of the primary load-carrying structure and various process engineering components, the latter being by far the most important in financial terms. In addition, supply structures such as free-standing tanks and silos are usually required for each plant to ensure the supply of material and product storage. Thus, for the earthquake-proof design of industrial plants, design and construction rules are required for the primary structures, the secondary structures and the supply structures. Within the framework of these rules, possible interactions of primary and secondary structures must also be taken into account. Importance factors are used in seismic design in order to take into account the usually higher risk potential of an industrial unit compared to conventional building structures. Industrial facilities must be able to withstand seismic actions because of possibly wide-ranging damage consequences in addition to losses due to production standstill and the destruction of valuable equipment. The chapter presents an integrated concept for the seismic design of industrial units based on current seismic standards and the latest research results. Special attention is devoted to the seismic design of steel thin-walled silos and tank structures. KW - Industrial units KW - Seismic design KW - Tanks KW - Silos KW - Components Y1 - 2019 SN - 978-3-662-57550-5 U6 - http://dx.doi.org/10.1007/978-3-662-57550-5_5 SP - 359 EP - 481 PB - Springer CY - Berlin ER - TY - CHAP A1 - Meskouris, Konstantin A1 - Butenweg, Christoph A1 - Hinzen, Klaus-G. A1 - Höffer, Rüdiger T1 - Stochasticity of Wind Processes and Spectral Analysis of Structural Gust Response T2 - Structural Dynamics with Applications in Earthquake and Wind Engineering N2 - Wind loads have great impact on many engineering structures. Wind storms often cause irreparable damage to the buildings which are exposed to it. Along with the earthquakes, wind represents one of the most common environmental load on structures and is relevant for limit state design. Modern wind codes indicate calculation procedures allowing engineers to deal with structural systems, which are susceptible to conduct wind-excited oscillations. In the codes approximate formulas for wind buffeting are specified which relate the dynamic problem to rather abstract parameter functions. The complete theory behind is not visible in order to simplify the applicability of the procedures. This chapter derives the underlying basic relations of the spectral method for wind buffeting and explains the main important applications of it in order to elucidate part of the theoretical background of computations after the new codes. The stochasticity of the wind processes is addressed, and the analysis of analytical as well as measurement based power spectra is outlined. Short MATLAB codes are added to the Appendix 3 which carry out the computation of a single sided auto-spectrum from a statistically stationary, discrete stochastic process. Two examples are presented. KW - Wind turbulence KW - Gust wind response KW - Spectral analysis Y1 - 2019 SN - 978-3-662-57550-5 (Online) SN - 978-3-662-57548-2 (Print) U6 - http://dx.doi.org/10.1007/978-3-662-57550-5_3 SP - 153 EP - 196 PB - Springer CY - Berlin ER -