TY - JOUR A1 - Takenaga, Shoko A1 - Schneider, Benno A1 - Erbay, E. A1 - Biselli, Manfred A1 - Schnitzler, Thomas A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process JF - Physica status solidi (a) N2 - A new microfluidic assembly method for semiconductor-based biosensors using 3D-printing technologies was proposed for a rapid and cost-efficient design of new sensor systems. The microfluidic unit is designed and printed by a 3D-printer in just a few hours and assembled on a light-addressable potentiometric sensor (LAPS) chip using a photo resin. The cell growth curves obtained from culturing cells within microfluidics-based LAPS systems were compared with cell growth curves in cell culture flasks to examine biocompatibility of the 3D-printed chips. Furthermore, an optimal cell culturing within microfluidics-based LAPS chips was achieved by adjusting the fetal calf serum concentrations of the cell culture medium, an important factor for the cell proliferation. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201532053 SN - 1862-6319 VL - 212 IS - 6 SP - 1347 EP - 1352 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Takenaga, Shoko A1 - Biselli, Manfred A1 - Schnitzler, Thomas A1 - Öhlschläger, Peter A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Toward multi-analyte bioarray sensors: LAPS-based on-chip determination of a Michaelis–Menten-like kinetics for cell culturing JF - Physica status solidi A : Applications and materials science N2 - The metabolic activity of Chinese hamster ovary (CHO) cells was observed using a light-addressable potentiometric sensor (LAPS). The dependency toward different glucose concentrations (17–200 mM) follows a Michaelis–Menten kinetics trajectory with Kₘ = 32.8 mM, and the obtained Kₘ value in this experiment was compared with that found in literature. In addition, the pH shift induced by glucose metabolism of tumor cells transfected with the HPV-16 genome (C3 cells) was successfully observed. These results indicate the possibility to determine the tumor cells metabolism with a LAPS-based measurement device. Y1 - 2014 U6 - http://dx.doi.org/10.1002/pssa.201330464 SN - 1521-396X (E); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print) VL - 211 IS - 6 SP - 1410 EP - 1415 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Takenaga, Shoko A1 - Herrera, Cony F. A1 - Werner, Frederik A1 - Biselli, Manfred A1 - Schnitzler, Thomas A1 - Schöning, Michael Josef A1 - Öhlschläger, Peter A1 - Wagner, Torsten T1 - Detection of the metabolic activity of cells by differential measurements based on a single light-addressable potentiometric sensor chip T2 - 11. Dresdner Sensor-Symposium : 9.-11.12.2013 Y1 - 2013 SN - 978-3-9813484-5-3 SP - 63 EP - 67 ER -