TY - CHAP A1 - Weiss, Christian A1 - Heslenfeld, Jonas A1 - Saewe, Jasmin Kathrin A1 - Bremen, Sebastian A1 - Häfner, Constantin Leon T1 - Investigation on the influence of powder humidity in Laser Powder Bed Fusion (LPBF) T2 - Procedia CIRP N2 - In the Laser Powder Bed Fusion (LPBF) process, parts are built out of metal powder material by exposure of a laser beam. During handling operations of the powder material, several influencing factors can affect the properties of the powder material and therefore directly influence the processability during manufacturing. Contamination by moisture due to handling operations is one of the most critical aspects of powder quality. In order to investigate the influences of powder humidity on LPBF processing, four materials (AlSi10Mg, Ti6Al4V, 316L and IN718) are chosen for this study. The powder material is artificially humidified, subsequently characterized, manufactured into cubic samples in a miniaturized process chamber and analyzed for their relative density. The results indicate that the processability and reproducibility of parts made of AlSi10Mg and Ti6Al4V are susceptible to humidity, while IN718 and 316L are barely influenced. KW - LPBF KW - Additive Manufacturing KW - Powder Material KW - Humidity Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.procir.2022.08.102 SN - 2212-8271 N1 - Teil der Sonderausgabe: 12th CIRP Conference on Photonic Technologies [LANE 2022] VL - 111 SP - 115 EP - 120 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rieper, Harald A1 - Gebhardt, Andreas A1 - Stucker, Brent T1 - Selective Laser Melting of the Eutectic Silver-Copper Alloy Ag 28 wt % Cu JF - RTejournal - Forum für Rapid Technologie N2 - The aim of this work was to perform a detailed investigation of the use of Selective Laser Melting (SLM) technology to process eutectic silver-copper alloy Ag 28 wt. % Cu (also called AgCu28). The processing occurred with a Realizer SLM 50 desktop machine. The powder analysis (SEM-topography, EDX, particle distribution) was reported as well as the absorption rates for the near-infrared (NIR) spectrum. Microscope imaging showed the surface topography of the manufactured parts. Furthermore, microsections were conducted for the analysis of porosity. The Design of Experiments approach used the response surface method in order to model the statistical relationship between laser power, spot distance and pulse time. KW - SLM KW - Response Surface Method KW - Porositat KW - Eutectic Silver Copper alloy KW - Additive Manufacturing Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?nbn:de:0009-2-44141 SN - 1614-0923 VL - 13 ER -