TY - CHAP A1 - Wittig, M. A1 - Rütters, René A1 - Bragard, Michael ED - Reiff-Stephan, Jörg ED - Jäkel, Jens ED - Schwarz, André T1 - Application of RL in control systems using the example of a rotatory inverted pendulum T2 - Tagungsband AALE 2024 : Fit für die Zukunft: praktische Lösungen für die industrielle Automation N2 - In this paper, the use of reinforcement learning (RL) in control systems is investigated using a rotatory inverted pendulum as an example. The control behavior of an RL controller is compared to that of traditional LQR and MPC controllers. This is done by evaluating their behavior under optimal conditions, their disturbance behavior, their robustness and their development process. All the investigated controllers are developed using MATLAB and the Simulink simulation environment and later deployed to a real pendulum model powered by a Raspberry Pi. The RL algorithm used is Proximal Policy Optimization (PPO). The LQR controller exhibits an easy development process, an average to good control behavior and average to good robustness. A linear MPC controller could show excellent results under optimal operating conditions. However, when subjected to disturbances or deviations from the equilibrium point, it showed poor performance and sometimes instable behavior. Employing a nonlinear MPC Controller in real time was not possible due to the high computational effort involved. The RL controller exhibits by far the most versatile and robust control behavior. When operated in the simulation environment, it achieved a high control accuracy. When employed in the real system, however, it only shows average accuracy and a significantly greater performance loss compared to the simulation than the traditional controllers. With MATLAB, it is not yet possible to directly post-train the RL controller on the Raspberry Pi, which is an obstacle to the practical application of RL in a prototyping or teaching setting. Nevertheless, RL in general proves to be a flexible and powerful control method, which is well suited for complex or nonlinear systems where traditional controllers struggle. KW - Rotatory Inverted Pendulum KW - MPC KW - LQR KW - PPO KW - Reinforcement Learning Y1 - 2024 SN - 978-3-910103-02-3 U6 - https://doi.org/10.33968/2024.53 N1 - 20. AALE-Konferenz. Bielefeld, 06.03.-08.03.2024. (Tagungsband unter https://doi.org/10.33968/2024.29) SP - 241 EP - 248 PB - le-tex publishing services GmbH CY - Leipzig ER - TY - JOUR A1 - Schopp, Christoph A1 - Rohrbach, Felix A1 - Langer, Luc A1 - Heuermann, Holger T1 - Detection of welding wire length by active S11 measurement JF - IEEE Transactions on Plasma Science N2 - A novel method to determine the extruded length of a metallic wire for a directed energy deposition (DED) process using a microwave (MW) plasma jet with a straight-through wire feed is presented. The method is based on the relative comparison of the measured frequency response obtained by the large-signal scattering parameter (Hot-S) technique. In the practical working range, repeatability of less than 6% for a nonactive plasma and 9% for the active plasma state is found. Measurements are conducted with a focus on a simple solution to decrease the processing time and reduce the integration time of the process into the existing hardware. It is shown that monitoring a single frequency for magnitude and phase changes is sufficient to achieve good accuracy. A combination of different measurement values to determine the length is possible. The applicability to different diameter of the same material is shown as well as a contact detection of the wire and metallic substrate. KW - Circuit simulation KW - Hot S-parameter KW - Modeling KW - Plasma KW - Plasma diagnostics Y1 - 2024 U6 - https://doi.org/10.1109/TPS.2024.3356659 SN - 0093-3813 (Print) SN - 1939-9375 (Online) IS - Early Access SP - 1 EP - 6 PB - IEEE ER - TY - JOUR A1 - Turdumamatov, Samat A1 - Belda, Aljoscha A1 - Heuermann, Holger T1 - Shaping a decoupled atmospheric pressure microwave plasma with antenna structures, Maxwell’s equations, and boundary conditions JF - IEEE Transactions on Plasma Science N2 - This article addresses the need for an innovative technique in plasma shaping, utilizing antenna structures, Maxwell’s laws, and boundary conditions within a shielded environment. The motivation lies in exploring a novel approach to efficiently generate high-energy density plasma with potential applications across various fields. Implemented in an E01 circular cavity resonator, the proposed method involves the use of an impedance and field matching device with a coaxial connector and a specially optimized monopole antenna. This setup feeds a low-loss cavity resonator, resulting in a high-energy density air plasma with a surface temperature exceeding 3500 o C, achieved with a minimal power input of 80 W. The argon plasma, resembling the shape of a simple monopole antenna with modeled complex dielectric values, offers a more energy-efficient alternative compared to traditional, power-intensive plasma shaping methods. Simulations using a commercial electromagnetic (EM) solver validate the design’s effectiveness, while experimental validation underscores the method’s feasibility and practical implementation. Analyzing various parameters in an argon atmosphere, including hot S -parameters and plasma beam images, the results demonstrate the successful application of this technique, suggesting its potential in coating, furnace technology, fusion, and spectroscopy applications. KW - 3-D printing KW - Furnace KW - Fusion KW - Hot S-parameter KW - Mode converter Y1 - 2024 U6 - https://doi.org/10.1109/TPS.2024.3383589 SN - 0093-3813 (Print) SN - 1939-9375 (Online) IS - Early Access SP - 1 EP - 9 PB - IEEE ER - TY - CHAP A1 - Schneider, Dominik A1 - Wisselink, Frank A1 - Czarnecki, Christian A1 - Nölle, Nikolai T1 - Benefits and framework conditions for information-driven business models concerning the Internet of Things T2 - Digitalization in companies N2 - In the context of the increasing digitalization, the Internet of Things (IoT) is seen as a technological driver through which completely new business models can emerge in the interaction of different players. Identified key players include traditional industrial companies, municipalities and telecommunications companies. The latter, by providing connectivity, ensure that small devices with tiny batteries can be connected almost anywhere and directly to the Internet. There are already many IoT use cases on the market that provide simplification for end users, such as Philips Hue Tap. In addition to business models based on connectivity, there is great potential for information-driven business models that can support or enhance existing business models. One example is the IoT use case Park and Joy, which uses sensors to connect parking spaces and inform drivers about available parking spaces in real time. Information-driven business models can be based on data generated in IoT use cases. For example, a telecommunications company can add value by deriving more decision-relevant information – called insights – from data that is used to increase decision agility. In addition, insights can be monetized. The monetization of insights can only be sustainable, if careful attention is taken and frameworks are considered. In this chapter, the concept of information-driven business models is explained and illustrated with the concrete use case Park and Joy. In addition, the benefits, risks and framework conditions are discussed. Y1 - 2024 SN - 978-3-658-39093-8 (Print) SN - 978-3-658-39094-5 (eBook) U6 - https://doi.org/10.1007/978-3-658-39094-5_5 SP - 59 EP - 75 PB - Springer CY - Wiesbaden ER - TY - CHAP A1 - Kramer, Pia A1 - Bragard, Michael A1 - Ritz, Thomas A1 - Ferfer, Ute A1 - Schiffers, Tim T1 - Visualizing, Enhancing and Predicting Students’ Success through ECTS Monitoring T2 - 2024 IEEE Global Engineering Education Conference (EDUCON) N2 - This paper serves as an introduction to the ECTS monitoring system and its potential applications in higher education. It also emphasizes the potential for ECTS monitoring to become a proactive system, supporting students by predicting academic success and identifying groups of potential dropouts for tailored support services. The use of the nearest neighbor analysis is suggested for improving data analysis and prediction accuracy. KW - Monitoring KW - Engineering education KW - Data visualization KW - Accuracy KW - Data analysis Y1 - 2024 U6 - https://doi.org/10.1109/EDUCON60312.2024.10578652 SN - 2165-9559 SN - 2165-9567 (eISSN) N1 - 2024 IEEE Global Engineering Education Conference (EDUCON), 08-11 May 2024, Kos Island, Greece PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Rütters, René A1 - Bragard, Michael A1 - Dolls, Sarah T1 - The Inverted Rotary Pendulum: Facilitating Practical Teaching in Advanced Control Engineering T2 - 2024 IEEE Global Engineering Education Conference (EDUCON) N2 - This paper outlines a practical approach to teach control engineering principles, with an inverted rotary pendulum, serving as an illustrative example. It shows how the pendulum is embedded in an advanced course of control engineering. This approach is incorporated into a flipped-classroom concept, as well as classical teaching concepts, offering students practical experience in control engineering. In addition, the design of the pendulum is shown, using a Raspberry Pi as the target platform for Matlab Simulink. This pendulum can be used in the classroom to evaluate the controller design mentioned above. It is analysed if the use of the pendulum generates a deeper understanding of the learning contents. KW - Matlab KW - Engineering education KW - Online services KW - Software packages KW - Electronic learning KW - Control engineering Y1 - 2024 U6 - https://doi.org/10.1109/EDUCON60312.2024.10578937 SN - 2165-9559 SN - 2165-9567 (eISSN) N1 - 2024 IEEE Global Engineering Education Conference (EDUCON), 08-11 May 2024, Kos Island, Greece PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Becker, Tim A1 - Bragard, Michael T1 - Low-Voltage DC Training Lab for Electric Drives - Optimizing the Balancing Act Between High Student Throughput and Individual Learning Speed T2 - 2024 IEEE Global Engineering Education Conference (EDUCON) N2 - After a brief introduction of conventional laboratory structures, this work focuses on an innovative and universal approach for a setup of a training laboratory for electric machines and drive systems. The novel approach employs a central 48 V DC bus, which forms the backbone of the structure. Several sets of DC machine, asynchronous machine and synchronous machine are connected to this bus. The advantages of the novel system structure are manifold, both from a didactic and a technical point of view: Student groups can work on their own performance level in a highly parallelized and at the same time individualized way. Additional training setups (similar or different) can easily be added. Only the total power dissipation has to be provided, i.e. the DC bus balances the power flow between the student groups. Comparative results of course evaluations of several cohorts of students are shown. KW - Synchronous machines KW - Power dissipation KW - Throughput KW - Low voltage KW - DC machines KW - Manifolds KW - Training Y1 - 2024 U6 - https://doi.org/10.1109/EDUCON60312.2024.10578902 SN - 2165-9559 SN - 2165-9567 (eISSN) N1 - 2024 IEEE Global Engineering Education Conference (EDUCON), 08-11 May 2024, Kos Island, Greece PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Wiegner, Jonas A1 - Volker, Hanno A1 - Mainz, Fabian A1 - Backes, Andreas A1 - Loeken, Michael A1 - Hüning, Felix T1 - Energy analysis of a wireless sensor node powered by a Wiegand sensor JF - Journal of Sensors and Sensor Systems (JSSS) N2 - This article describes an Internet of things (IoT) sensing device with a wireless interface which is powered by the energy-harvesting method of the Wiegand effect. The Wiegand effect, in contrast to continuous sources like photovoltaic or thermal harvesters, provides small amounts of energy discontinuously in pulsed mode. To enable an energy-self-sufficient operation of the sensing device with this pulsed energy source, the output energy of the Wiegand generator is maximized. This energy is used to power up the system and to acquire and process data like position, temperature or other resistively measurable quantities as well as transmit these data via an ultra-low-power ultra-wideband (UWB) data transmitter. A proof-of-concept system was built to prove the feasibility of the approach. The energy consumption of the system during start-up was analysed, traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof of concept, an application prototype was developed. Y1 - 2023 U6 - https://doi.org/10.5194/jsss-12-85-2023 SN - 2194-878X N1 - Corresponding author: Felix Hüning VL - 12 IS - 1 SP - 85 EP - 92 PB - Copernicus Publ. CY - Göttingen ER - TY - CHAP A1 - Chircu, Alina A1 - Czarnecki, Christian A1 - Friedmann, Daniel A1 - Pomaskow, Johanna A1 - Sultanow, Eldar T1 - Towards a Digital Twin of Society T2 - Proceedings of the 56th Hawaii International Conference on System Sciences 2023 N2 - This paper describes the potential for developing a digital twin of society- a dynamic model that can be used to observe, analyze, and predict the evolution of various societal aspects. Such a digital twin can help governmental agencies and policy makers in interpreting trends, understanding challenges, and making decisions regarding investments or policies necessary to support societal development and ensure future prosperity. The paper reviews related work regarding the digital twin paradigm and its applications. The paper presents a motivating case study- an analysis of opportunities and challenges faced by the German federal employment agency, Bundesagentur f¨ur Arbeit (BA), proposes solutions using digital twins, and describes initial proofs of concept for such solutions. KW - Digital twin KW - Digital transformation KW - Prototype KW - Society KW - Stress testing Y1 - 2023 SN - 978-0-9981331-6-4 N1 - 56th Hawaii International Conference on System Sciences, HICSS 2023, Maui, Hawaii, USA, January 3-6, 2023 SP - 6748 EP - 6757 PB - University of Hawai'i CY - Honolulu ER - TY - CHAP A1 - Altherr, Lena A1 - Conzen, Max A1 - Elsen, Ingo A1 - Frauenrath, Tobias A1 - Lyrmann, Andreas ED - Reiff-Stephan, Jörg ED - Jäkel, Jens ED - Schwarz, André T1 - Sensor retrofitting of existing buildings in an interdisciplinary teaching project at university level T2 - Tagungsband AALE 2023 : mit Automatisierung gegen den Klimawandel N2 - Existing residential buildings have an average lifetime of 100 years. Many of these buildings will exist for at least another 50 years. To increase the efficiency of these buildings while keeping costs at reasonable rates, they can be retrofitted with sensors that deliver information to central control units for heating, ventilation and electricity. This retrofitting process should happen with minimal intervention into existing infrastructure and requires new approaches for sensor design and data transmission. At FH Aachen University of Applied Sciences, students of different disciplines work together to learn how to design, build, deploy and operate such sensors. The presented teaching project already created a low power design for a combined CO2, temperature and humidity measurement device that can be easily integrated into most home automation systems KW - Building Automation KW - Smart Building KW - CO2 KW - Carbon Dioxide KW - Education Y1 - 2023 SN - 978-3-910103-01-6 U6 - https://doi.org/10.33968/2023.04 N1 - 19. AALE-Konferenz. Luxemburg, 08.03.-10.03.2023. BTS Connected Buildings & Cities Luxemburg (Tagungsband unter https://doi.org/10.33968/2023.01) SP - 31 EP - 40 PB - le-tex publishing services GmbH CY - Leipzig ER -