TY - CHAP A1 - Schulze-Buxloh, Lina A1 - Groß, Rolf Fritz T1 - Miniature urban farming plant: a complex educational “Toy” for engineering students T2 - The Future of Education 11th Edition 2021 N2 - Urban farming is an innovative and sustainable way of food production and is becoming more and more important in smart city and quarter concepts. It also enables the production of certain foods in places where they usually dare not produced, such as production of fish or shrimps in large cities far away from the coast. Unfortunately, it is not always possible to show students such concepts and systems in real life as part of courses: visits of such industry plants are sometimes not possible because of distance or are permitted by the operator for hygienic reasons. In order to give the students the opportunity of getting into contact with such an urban farming system and its complex operation, an industrial urban farming plant was set up on a significantly smaller scale. Therefore, all needed technical components like water aeriation, biological and mechanical filtration or water circulation have been replaced either by aquarium components or by self-designed parts also using a 3D-printer. Students from different courses like mechanical engineering, smart building engineering, biology, electrical engineering, automation technology and civil engineering were involved in this project. This “miniature industrial plant” was also able to start operation and has now been running for two years successfully. Due to Corona pandemic, home office and remote online lectures, the automation of this miniature plant should be brought to a higher level in future for providing a good control over the system and water quality remotely. The aim of giving the student a chance to get to know the operation of an urban farming plant was very well achieved and the students had lots of fun in “playing” and learning with it in a realistic way. KW - urban farming KW - food production KW - smart engineering KW - 3D printing KW - sustainability Y1 - 2021 N1 - FOE 2021 : The Future of Education International Conference – Fully Virtual Edition; 01.07.2021-02.07.2021; Florence, Italy ER - TY - CHAP A1 - Mohan, Nijanthan A1 - Groß, Rolf Fritz A1 - Menzel, Karsten A1 - Theis, Fabian T1 - Opportunities and Challenges in the Implementation of Building Information Modeling for Prefabrication of Heating, Ventilation and Air Conditioning Systems in Small and Medium-Sized Contracting Companies in Germany – A Case Study T2 - WIT Transactions on The Built Environment, Vol. 205 N2 - FEven though BIM (Building Information Modelling) is successfully implemented in most of the world, it is still in the early stages in Germany, since the stakeholders are sceptical of its reliability and efficiency. The purpose of this paper is to analyse the opportunities and obstacles to implementing BIM for prefabrication. Among all other advantages of BIM, prefabrication is chosen for this paper because it plays a vital role in creating an impact on the time and cost factors of a construction project. The project stakeholders and participants can explicitly observe the positive impact of prefabrication, which enables the breakthrough of the scepticism factor among the small-scale construction companies. The analysis consists of the development of a process workflow for implementing prefabrication in building construction followed by a practical approach, which was executed with two case studies. It was planned in such a way that, the first case study gives a first-hand experience for the workers at the site on the BIM model so that they can make much use of the created BIM model, which is a better representation compared to the traditional 2D plan. The main aim of the first case study is to create a belief in the implementation of BIM Models, which was succeeded by the execution of offshore prefabrication in the second case study. Based on the case studies, the time analysis was made and it is inferred that the implementation of BIM for prefabrication can reduce construction time, ensures minimal wastes, better accuracy, less problem-solving at the construction site. It was observed that this process requires more planning time, better communication between different disciplines, which was the major obstacle for successful implementation. This paper was carried out from the perspective of small and medium-sized mechanical contracting companies for the private building sector in Germany. KW - building information modelling KW - HVAC KW - prefabrication KW - construction KW - small and medium scaled companies Y1 - 2021 U6 - http://dx.doi.org/10.2495/BIM210101 SN - 1743-3509 N1 - 4th International Conference on Building Information Modelling (BIM) in Design, Construction and Operations, 1–3 September 2021. Santiago de Compostela, Spain SP - 117 EP - 126 PB - WIT Press CY - Southampton ER - TY - CHAP A1 - Schulze-Buxloh, Lina A1 - Groß, Rolf Fritz T1 - Interdisciplinary Course Smart Building Engineering: A new approach of teaching freshmen in remote teamwork project under pandemic restrictions T2 - New Perspectives in Science Education -International Conference (virtual event, 18-19 March 2021) N2 - In the context of the Corona pandemic and its impact on teaching like digital lectures and exercises a new concept especially for freshmen in demanding courses of Smart Building Engineering became necessary. As there were hardly any face-to-face events at the university, the new teaching concept should enable a good start into engineering studies under pandemic conditions anyway and should also replace the written exam at the end. The students should become active themselves in small teams instead of listening passively to a lecture broadcast online with almost no personal contact. For this purpose, a role play was developed in which the freshmen had to work out a complete solution to the realistic problem of designing, construction planning and implementing a small guesthouse. Each student of the team had to take a certain role like architect, site manager, BIM-manager, electrician and the technitian for HVAC installations. Technical specifications must be complied with, as well as documentation, time planning and cost estimate. The final project folder had to contain technical documents like circuit diagrams for electrical components, circuit diagrams for water and heating, design calculations and components lists. On the other hand construction schedule, construction implementation plan, documentation of the construction progress and minutes of meetings between the various trades had to be submitted as well. In addition to the project folder, a model of the construction project must also be created either as a handmade model or as a digital 3D-model using Computer-aided design (CAD) software. The first steps in the field of Building information modelling (BIM) had also been taken by creating a digital model of the building showing the current planning status in real time as a digital twin. This project turned out to be an excellent training of important student competencies like teamwork, communication skills, and self -organisation and also increased motivation to work on complex technical questions. The aim of giving the student a first impression on the challenges and solutions in building projects with many different technical trades and their points of view was very well achieved and should be continued in the future. KW - Freshmen KW - roleplay KW - Smart Building Engineering KW - BIM KW - remote teamwork Y1 - 2021 N1 - New Perspectives in Science Education - 10th Edition 18-19 March 2021 Fully Virtual Conference PB - Filodiritto CY - Bologna ER - TY - CHAP A1 - Schulze-Buxloh, Lina A1 - Groß, Rolf Fritz A1 - Ulbrich, Michelle T1 - Digital planning using building information modelling and virtual reality: new approach for students’ remote practical training under lockdown conditions in the course of smart building engineering T2 - Proceedings of International Conference on Education in Mathematics, Science and Technology 2021 N2 - The worldwide Corona pandemic has severely restricted student projects in the higher semesters of engineering courses. In order not to delay the graduation, a new concept had to be developed for projects under lockdown conditions. Therefore, unused rooms at the university should be digitally recorded in order to develop a new usage concept as laboratory rooms. An inventory of the actual state of the rooms was done first by taking photos and listing up all flaws and peculiarities. After that, a digital site measuring was done with a 360° laser scanner and these recorded scans were linked to a coherent point cloud and transferred to a software for planning technical building services and supporting Building Information Modelling (BIM). In order to better illustrate the difference between the actual and target state, two virtual reality models were created for realistic demonstration. During the project, the students had to go through the entire digital planning phases. Technical specifications had to be complied with, as well as documentation, time planning and cost estimate. This project turned out to be an excellent alternative to on-site practical training under lockdown conditions and increased the students’ motivation to deal with complex technical questions. KW - smart building engineering KW - building information modelling KW - virtual reality KW - lockdown conditions KW - emote practical training Y1 - 2021 SN - 978-1-952092-17-6 N1 - April 1-4, 2021 in Antalya, Turkey. SP - 118 EP - 123 PB - ISTES Organization CY - San Antonio, TX ER - TY - CHAP A1 - Duran Paredes, Ludwin A1 - Mottaghy, Darius A1 - Herrmann, Ulf A1 - Groß, Rolf Fritz T1 - Online ground temperature and soil moisture monitoring of a shallow geothermal system with non-conventional components T2 - EGU General Assembly 2020 N2 - We present first results from a newly developed monitoring station for a closed loop geothermal heat pump test installation at our campus, consisting of helix coils and plate heat exchangers, as well as an ice-store system. There are more than 40 temperature sensors and several soil moisture content sensors distributed around the system, allowing a detailed monitoring under different operating conditions.In the view of the modern development of renewable energies along with the newly concepts known as Internet of Things and Industry 4.0 (high-tech strategy from the German government), we created a user-friendly web application, which will connect the things (sensors) with the open network (www). Besides other advantages, this allows a continuous remote monitoring of the data from the numerous sensors at an arbitrary sampling rate.Based on the recorded data, we will also present first results from numerical simulations, taking into account all relevant heat transport processes.The aim is to improve the understanding of these processes and their influence on the thermal behavior of shallow geothermal systems in the unsaturated zone. This will in turn facilitate the prediction of the performance of these systems and therefore yield an improvement in their dimensioning when designing a specific shallow geothermal installation. Y1 - 2020 N1 - Online 4–8 May 2020 [Session ERE2.8] EGU2020-19052 ER - TY - CHAP A1 - Groß, Rolf Fritz T1 - Möglichkeiten und Grenzen für Forschung an Fachhochschulen T2 - Smart Building Convention und BIMconvention in Aachen im September Y1 - 2018 N1 - 10. und 11. September 2018, Aachen ER - TY - RPRT A1 - Höfler, Matthias A1 - Groß, Rolf Fritz T1 - Optimierung der Oxidationskinetik von Sulfit zu Sulfat durch effiziente feinblasige Belüftung bei Anlagen zur Rauchgasentschwefelung fossil befeuerter Kraftwerke und Industrieanlagen mittels Seewasser ("Optiox") N2 - Das Forschungsvorhaben Optiox beschäftigt sich mit der Optimierung eines Belüftungsbeckens zur Rauchgasentschwefelung fossil befeuerter Kraftwerke mittels Seewasser. Unter Neutralisierung der entstehenden Hydroniumionen (H3O+) durch die natürliche Alkalität des Seewassers dissoziiert Schwefeldioxid aus dem Rauchgase im vorgeschalteten Absorber beim Phasenübergang von der Gas- in die Flüssigphase zu Sulfiten. Im Belüftungsbecken werden diese Sulfite mittels eingeblasener Luft zu Sulfaten oxidiert, was zu einer geringen Erhöhung der Sulfatfracht vor Einleitung ins Meer führt, die unterhalb der natürlichen Schwankungen liegt. Daneben dient das Belüftungsbecken der Konditionierung des Seewassers hinsichtlich pH-Wert und Sauerstoffgehalt und ist mit hoch effizienten Belüftern ausgestattet, deren Spezifikation den jeweiligen Randbedingungen, wie Abscheideleistung des Absorbers, Beckengeometrie sowie lokalen Gegebenheiten angepasst wird. Y1 - 2016 N1 - Projektlaufzeit: 10/2012 – 09/2015 Gefördert durch: BMBF – Förderkennlinie Ingenieurnachwuchs Kooperationspartner: Doosan Lentjes GmbH, Ratingen, FH Aachen, Fachbereich Energietechnik, Prof. Dr.-Ing. Rolf Groß ER - TY - JOUR A1 - Groß, Rolf Fritz A1 - Berger, J. T1 - Quo Vadis - Ausblick in die Gebäudeleittechnik der Zukunft T1 - Whitherfacility management? An outlook to the future JF - HLH. Heizung, Lüftung/Klima, Haustechnik N2 - Auf dem Weg zum vernetzten Haus stoßen Hersteller und Planer, insbesondere im privaten Wohnungsbau, zur Zeit noch auf erhebliche Widerstände bei der Durchdringung des Marktes. N2 - Producers and planners of facility management systems are still faced with building owners' reluctance, especially when it comes to private homes. Y1 - 2005 SN - 1436-5103 VL - 56 IS - 1 SP - 39 EP - 41 PB - Springer CY - Düsseldorf ER - TY - RPRT A1 - Ayar, A. A1 - Fielenbach, C. A1 - Groß, Rolf Fritz A1 - Holfeld, T. A1 - Lockemann, S. A1 - Severin, C. A1 - Thulfaut, Christian A1 - Hillemacher, B. T1 - Druckkohlenstaubverbrennung von rheinischer Braunkohle : Abschlussbericht T1 - Pressure combustion of rhenish brown coal : final report N2 - Im Rahmen des Forschungsschwerpunkts 3 wurde experimentell und theoretisch die NO{sub x}-Bildung und -Reduktion bei der Druckkohlenstaubverbrennung untersucht. Der zuvor beschriebene Einfluss der Kohlemahlung auf die Flamme konnte auch anhand der NO{sub x}-Messungen an der DKSF-Anlage Aachen bestaetigt werden. Waehrend mit Braunkohle im Staubfeuerungsbetrieb noch keine eindeutige Druckabhaengigkeit nachgewiesen werden konnte, haben vom Lehrstuhl durchgefuehrte NO{sub x}-Messungen an der DKSF-Anlage Dorsten im Schmelzkammerfeuerungsbetrieb mit der Steinkohle Spitzbergen zwischen 9 und 13 bar ein Absinken der Stickoxidkonzentrationen mit steigendem Druck ergeben. Fuer die rheinische Braunkohle soll dieser Druckeinfluss in den naechsten Versuchsfahrten ausfuehrlicher untersucht werden. Es wurde anhand von numerischen Simulationen zu einer Braunkohleflamme der 6. Versuchsfahrt ein Vergleich zwischen der NO{sub x}-Modellierung im Standard-FLUENT-Code und in dem mit User Defined Subroutines der international flame research foundation (IFRF), Ijmuiden, erweiterten FLUENT-Code vorgenommen. Es zeigte sich, dass bei der Modellierung der Stickoxidbildung die unterschiedlich vorhergesagten Flammentemperaturen eine entscheidende Rolle spielen. Eine genauere Analyse der NO{sub x}-Modelle im Vergleich zu Messergebnissen ist bei einer Schmelzkammerfeuerung mit einer stabilen Flamme vorzunehmen. Es wurden zusaetzlich Messungen zur Untersuchung der Kinetik homogener Gasphasenreaktionen in Rauchgasen an einem Stahlreaktor durchgefuehrt. Dabei wurde sowohl der thermisch bedingte als auch der durch zudosierte Additive katalysierte Abbau nitroser Komponenten betrachtet. Vergleichend wurden mit einem am Lehrstuhl entwickelten Programm die Kinetik beschrieben. Hierbei wird mit einer Sensitivitaetsanalyse eine Reduzierung der detaillierten Darstellung der Reaktionskinetik erreicht, die es erlaubt, mit einem CFD-Code wie FLUENT zwei- und dreidimensionale Rechnungen zum Abbau verschiedener Rauchgaskomponenten durchzufuehren. Die Uebereinstimmung zwischen ein- und zweidimensionalen Rechnungen und den Messungen ist gut. N2 - NOx formation and reduction in the coal combustion process was investigated both experimentally and theoretically. The influence of coal grain size described in earlier publications was proved by the measurements at the DKSF test facility at Aachen. While no pressure dependence was established so far for lignite, measurements on Spitzbergen coal at 9 - 13 bar showed a decrease in NOx concentrations with increasing pressure. This effect will be investigated for Rhenish brown coal in further experiments. Modelling by the standard FLUENT code and by the user defined subroutines of the FLUENT code developed by the International Flame Research Foundation (IFRF), Ijmuiden, showed that the different predictions of flame temperatures have a decisive role in the modelling of NOx formation. A more accurate analysis of the NOx models as compared to ther measurements will be carried out in a melting chamber furnace with a stable flame. Additionally, measurements were carried out for investigating the kinetics of homogeneous gaseous phase reactions in flue gases, i.e. the thermal and additive-catalysed degradation of nitrous components was investigated. The kinetics of the process was also described by a code developed at Aachen University. On the base of a sensitivity analysis, a reduction of the detailed modelling of the reaction kinetics is achieved which permits 2D and 3D calculations on the decomposition of different flue gas components using a CFD code like FLUENT. The 1D and 2D calculations and the measurements were found to be in good agreement. Y1 - 2003 N1 - Druckkohlenstaubverbrennung von rheinischer Braunkohle Förderkennzeichen: 0327072 Abschlussbericht zum Forschungsvorhaben ausführende Stelle: Lehrstuhl fur Wärmeübertragung und Klimatechnik der RWTH Aachen Professor Dr.-Ing. U. Renz ER - TY - JOUR A1 - Groß, Rolf Fritz A1 - Berger, J. A1 - Groß, H. T1 - Gebäudeautomation - Betriebsdatenerfassung und Gebäudeleittechnik im Klartext T1 - Operating data- and facility management in clear JF - HLH. Heizung, Lüftung/Klima, Haustechnik KW - Heizung KW - Lüftung KW - Klimatechnik KW - Lüftungstechnik KW - Haustechnik Y1 - 2003 SN - 1436-5103 VL - 54 IS - 2 SP - 81 PB - Springer CY - Düsseldorf ER -