TY - JOUR A1 - Monakhova, Yulia A1 - Diehl, Bernd W. K. T1 - A step towards optimization of the qNMR workflow: proficiency testing exercise at an GxP-accredited laboratory JF - Applied Magnetic Resonance N2 - Quantitative nuclear magnetic resonance (qNMR) is considered as a powerful tool for multicomponent mixture analysis as well as for the purity determination of single compounds. Special attention is currently paid to the training of operators and study directors involved in qNMR testing. To assure that only qualified personnel are used for sample preparation at our GxP-accredited laboratory, weighing test was proposed. Sixteen participants performed six-fold weighing of the binary mixture of dibutylated hydroxytoluene (BHT) and 1,2,4,5-tetrachloro-3-nitrobenzene (TCNB). To evaluate the quality of data analysis, all spectra were evaluated manually by a qNMR expert and using in-house developed automated routine. The results revealed that mean values are comparable and both evaluation approaches are free of systematic error. However, automated evaluation resulted in an approximately 20% increase in precision. The same findings were revealed for qNMR analysis of 32 compounds used in pharmaceutical industry. Weighing test by six-fold determination in binary mixtures and automated qNMR methodology can be recommended as efficient tools for evaluating staff proficiency. The automated qNMR method significantly increases throughput and precision of qNMR for routine measurements and extends application scope of qNMR. Y1 - 2021 U6 - http://dx.doi.org/10.1007/s00723-021-01324-3 SN - 1613-7507 N1 - Corresponding author: Yulia Monakhova VL - 52 SP - 581 EP - 593 PB - Springer Nature CY - Wien ER - TY - JOUR A1 - Jablonski, Melanie A1 - Münstermann, Felix A1 - Nork, Jasmina A1 - Molinnus, Denise A1 - Muschallik, Lukas A1 - Bongaerts, Johannes A1 - Wagner, Torsten A1 - Keusgen, Michael A1 - Siegert, Petra A1 - Schöning, Michael Josef T1 - Capacitive field‐effect biosensor applied for the detection of acetoin in alcoholic beverages and fermentation broths JF - physica status solidi (a) applications and materials science N2 - An acetoin biosensor based on a capacitive electrolyte–insulator–semiconductor (EIS) structure modified with the enzyme acetoin reductase, also known as butane-2,3-diol dehydrogenase (Bacillus clausii DSM 8716ᵀ), is applied for acetoin detection in beer, red wine, and fermentation broth samples for the first time. The EIS sensor consists of an Al/p-Si/SiO₂/Ta₂O₅ layer structure with immobilized acetoin reductase on top of the Ta₂O₅ transducer layer by means of crosslinking via glutaraldehyde. The unmodified and enzyme-modified sensors are electrochemically characterized by means of leakage current, capacitance–voltage, and constant capacitance methods, respectively. KW - acetoin KW - acetoin reductase KW - alcoholic beverages KW - biosensors KW - capacitive field-effect sensors Y1 - 2021 U6 - http://dx.doi.org/10.1002/pssa.202000765 SN - 1862-6319 VL - 218 IS - 13 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Capitain, Charlotte A1 - Wagner, Sebastian A1 - Hummel, Joana A1 - Tippkötter, Nils T1 - Investigation of C–N Formation Between Catechols and Chitosan for the Formation of a Strong, Novel Adhesive Mimicking Mussel Adhesion JF - Waste and Biomass Valorization Y1 - 2021 U6 - http://dx.doi.org/10.1007/s12649-020-01110-5 SN - 1877-265X N1 - Corresponding author: Nils Tippkötter VL - 12 SP - 1761 EP - 1779 PB - Springer Nature CY - Cham ER -