TY - CHAP A1 - Zähl, Philipp M. A1 - Biewendt, Marcel A1 - Wolf, Martin A1 - Eggert, Mathias T1 - Requirements for Competence Developing Games in the Environment of SE Competence Development T2 - Angewandte Forschung in der Wirtschaftsinformatik 2022 N2 - Many of today’s factors make software development more and more complex, such as time pressure, new technologies, IT security risks, et cetera. Thus, a good preparation of current as well as future software developers in terms of a good software engineering education becomes progressively important. As current research shows, Competence Developing Games (CDGs) and Serious Games can offer a potential solution. This paper identifies the necessary requirements for CDGs to be conducive in principle, but especially in software engineering (SE) education. For this purpose, the current state of research was summarized in the context of a literature review. Afterwards, some of the identified requirements as well as some additional requirements were evaluated by a survey in terms of subjective relevance. KW - software engineering KW - requirements KW - competence developing games KW - systematic literature review Y1 - 2022 SN - 978-3-95545-409-8 U6 - http://dx.doi.org/10.30844/AKWI_2022_05 N1 - Tagungsband zur 35. Jahrestagung des Arbeitskreises Wirtschaftsinformatik an Hochschulen für Angewandte Wissenschaften im deutschsprachigen Raum (AKWI) vom 11.09. bis 13.09.2022, ausgerichtet von der Hochschule für Technik und Wirtschaft Berlin (HTW Berlin) und der Hochschule für Wirtschaft und Recht Berlin (HWR Berlin) SP - 73 EP - 88 PB - GITO CY - Berlin ER - TY - CHAP A1 - Chavez Bermudez, Victor Francisco A1 - Cruz Castanon, Victor Fernando A1 - Ruchay, Marco A1 - Wollert, Jörg ED - Leipzig, Hochschule für Technik, Wirtschaft und Kultur T1 - Rapid prototyping framework for automation applications based on IO-Link T2 - Tagungsband AALE 2022 N2 - The development of protype applications with sensors and actuators in the automation industry requires tools that are independent of manufacturer, and are flexible enough to be modified or extended for any specific requirements. Currently, developing prototypes with industrial sensors and actuators is not straightforward. First of all, the exchange of information depends on the industrial protocol that these devices have. Second, a specific configuration and installation is done based on the hardware that is used, such as automation controllers or industrial gateways. This means that the development for a specific industrial protocol, highly depends on the hardware and the software that vendors provide. In this work we propose a rapid-prototyping framework based on Arduino to solve this problem. For this project we have focused to work with the IO-Link protocol. The framework consists of an Arduino shield that acts as the physical layer, and a software that implements the IO-Link Master protocol. The main advantage of such framework is that an application with industrial devices can be rapid-prototyped with ease as its vendor independent, open-source and can be ported easily to other Arduino compatible boards. In comparison, a typical approach requires proprietary hardware, is not easy to port to another system and is closed-source. KW - Rapid-prototyping KW - Arduino KW - IO-Link KW - Industrial Communication Y1 - 2022 SN - 978-3-910103-00-9 U6 - http://dx.doi.org/10.33968/2022.28 N1 - 18. AALE-Konferenz, Pforzheim, 09.03.-11.03.2022. CY - Leipzig ER - TY - CHAP A1 - Schopen, Oliver A1 - Shabani, Bahman A1 - Esch, Thomas A1 - Kemper, Hans A1 - Shah, Neel ED - Rahim, S.A. ED - As'arry, A. ED - Zuhri, M.Y.M. ED - Harmin, M.Y. ED - Rezali, K.A.M. ED - Hairuddin, A.A. T1 - Quantitative evaluation of health management designs for fuel cell systems in transport vehicles T2 - 2nd UNITED-SAIG International Conference Proceedings N2 - Focusing on transport vehicles, mainly with regard to aviation applications, this paper presents compilation and subsequent quantitative evaluation of methods aimed at building an optimum integrated health management solution for fuel cell systems. The methods are divided into two different main types and compiled in a related scheme. Furthermore, different methods are analysed and evaluated based on parameters specific to the aviation context of this study. Finally, the most suitable method for use in fuel cell health management systems is identified and its performance and suitability is quantified. KW - aviation application KW - health management systems KW - fuel cell systems Y1 - 2022 N1 - 2nd UNITED-SAIG International Conference, 23-24 May 2022, Putrajaya, Malaysia SP - 1 EP - 3 ER - TY - CHAP A1 - Gaigall, Daniel T1 - On Consistent Hypothesis Testing In General Hilbert Spaces N2 - Inference on the basis of high-dimensional and functional data are two topics which are discussed frequently in the current statistical literature. A possibility to include both topics in a single approach is working on a very general space for the underlying observations, such as a separable Hilbert space. We propose a general method for consistently hypothesis testing on the basis of random variables with values in separable Hilbert spaces. We avoid concerns with the curse of dimensionality due to a projection idea. We apply well-known test statistics from nonparametric inference to the projected data and integrate over all projections from a specific set and with respect to suitable probability measures. In contrast to classical methods, which are applicable for real-valued random variables or random vectors of dimensions lower than the sample size, the tests can be applied to random vectors of dimensions larger than the sample size or even to functional and high-dimensional data. In general, resampling procedures such as bootstrap or permutation are suitable to determine critical values. The idea can be extended to the case of incomplete observations. Moreover, we develop an efficient algorithm for implementing the method. Examples are given for testing goodness-of-fit in a one-sample situation in [1] or for testing marginal homogeneity on the basis of a paired sample in [2]. Here, the test statistics in use can be seen as generalizations of the well-known Cramérvon-Mises test statistics in the one-sample and two-samples case. The treatment of other testing problems is possible as well. By using the theory of U-statistics, for instance, asymptotic null distributions of the test statistics are obtained as the sample size tends to infinity. Standard continuity assumptions ensure the asymptotic exactness of the tests under the null hypothesis and that the tests detect any alternative in the limit. Simulation studies demonstrate size and power of the tests in the finite sample case, confirm the theoretical findings, and are used for the comparison with concurring procedures. A possible application of the general approach is inference for stock market returns, also in high data frequencies. In the field of empirical finance, statistical inference of stock market prices usually takes place on the basis of related log-returns as data. In the classical models for stock prices, i.e., the exponential Lévy model, Black-Scholes model, and Merton model, properties such as independence and stationarity of the increments ensure an independent and identically structure of the data. Specific trends during certain periods of the stock price processes can cause complications in this regard. In fact, our approach can compensate those effects by the treatment of the log-returns as random vectors or even as functional data. Y1 - 2022 U6 - http://dx.doi.org/10.11159/icsta22.157 N1 - Proceedings of the 4th International Conference on Statistics: Theory and Applications (ICSTA’22) Prague, Czech Republic – July 28- 30 SP - Paper No. 157 PB - Avestia Publishing CY - Orléans, Kanada ER - TY - CHAP A1 - Mertens, Alexander A1 - Brauner, Philipp A1 - Baier, Ralph A1 - Brillowski, Florian A1 - Dammers, Hannah A1 - van Dyck, Marc A1 - Kong, Iris A1 - Königs, Peter A1 - Kordtomeikel, Frauke A1 - Liehner, Gian Luca A1 - Pütz, Sebastian A1 - Rodermann, Niklas A1 - Schaar, Anne Kathrin A1 - Steuer-Dankert, Linda A1 - Vervier, Luisa A1 - Wlecke, Shari A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Nagel, Saskia K. A1 - Piller, Frank T. A1 - Schuh, Günther A1 - Ziefle, Martina A1 - Nitsch, Verena ED - Michael, Judith ED - Pfeiffer, Jérôme ED - Wortmann, Andreas T1 - Modelling Human Factors in Cyber Physical Production Systems by the Integration of Human Digital Shadows T2 - Modellierung 2022 Satellite Events N2 - The future of industrial manufacturing and production will increasingly manifest in the form of cyber-physical production systems. Here, Digital Shadows will act as mediators between the physical and digital world to model and operationalize the interactions and relationships between different entities in production systems. Until now, the associated concepts have been primarily pursued and implemented from a technocentric perspective, in which human actors play a subordinate role, if they are considered at all. This paper outlines an anthropocentric approach that explicitly considers the characteristics, behavior, and traits and states of human actors in socio-technical production systems. For this purpose, we discuss the potentials and the expected challenges and threats of creating and using Human Digital Shadows in production. KW - human digital shadow KW - cyber physical production system KW - human factors Y1 - 2022 U6 - http://dx.doi.org/10.18420/modellierung2022ws-018 SP - 147 EP - 149 PB - GI Gesellschaft für Informatik CY - Bonn ER - TY - CHAP A1 - Zahra, Mahdi A1 - Phani Srujan, Merige A1 - Caminos, Ricardo Alexander Chico A1 - Schmitz, Pascal A1 - Herrmann, Ulf A1 - Teixeira Boura, Cristiano José A1 - Schmitz, Mark A1 - Gielen, Hans A1 - Gedle, Yibekal A1 - Dersch, Jürgen T1 - Modeling the thermal behavior of solar salt in electrical resistance heaters for the application in PV-CSP hybrid power plants T2 - SOLARPACES 2020 N2 - Concentrated Solar Power (CSP) systems are able to store energy cost-effectively in their integrated thermal energy storage (TES). By intelligently combining Photovoltaics (PV) systems with CSP, a further cost reduction of solar power plants is expected, as well as an increase in dispatchability and flexibility of power generation. PV-powered Resistance Heaters (RH) can be deployed to raise the temperature of the molten salt hot storage from 385 °C up to 565 °C in a Parabolic Trough Collector (PTC) plant. To avoid freezing and decomposition of molten salt, the temperature distribution in the electrical resistance heater is investigated in the present study. For this purpose, a RH has been modeled and CFD simulations have been performed. The simulation results show that the hottest regions occur on the electric rod surface behind the last baffle. A technical optimization was performed by adjusting three parameters: Shell-baffle clearance, electric rod-baffle clearance and number of baffles. After the technical optimization was carried out, the temperature difference between the maximum temperature and the average outlet temperature of the salt is within the acceptable limits, thus critical salt decomposition has been avoided. Additionally, the CFD simulations results were analyzed and compared with results obtained with a one-dimensional model in Modelica. KW - Solar thermal technologies KW - Hybrid energy system KW - Concentrated solar power KW - Energy storage KW - Photovoltaics Y1 - 2022 SN - 978-0-7354-4195-8 U6 - http://dx.doi.org/10.1063/5.0086268 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September–2 October 2020 Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Dannen, Tammo A1 - Schindele, Benedikt A1 - Prümmer, Marcel A1 - Arntz, Kristian A1 - Bergs, Thomas T1 - Methodology for the self-optimizing determination of additive manufacturing process eligibility and optimization potentials in toolmaking T2 - Procedia CIRP N2 - Additive Manufacturing (AM) of metallic workpieces faces a continuously rising technological relevance and market size. Producing complex or highly strained unique workpieces is a significant field of application, making AM highly relevant for tool components. Its successful economic application requires systematic workpiece based decisions and optimizations. Considering geometric and technological requirements as well as the necessary post-processing makes deciding effortful and requires in-depth knowledge. As design is usually adjusted to established manufacturing, associated technological and strategic potentials are often neglected. To embed AM in a future proof industrial environment, software-based self-learning tools are necessary. Integrated into production planning, they enable companies to unlock the potentials of AM efficiently. This paper presents an appropriate methodology for the analysis of process-specific AM-eligibility and optimization potential, added up by concrete optimization proposals. For an integrated workpiece characterization, proven methods are enlarged by tooling-specific figures. The first stage of the approach specifies the model’s initialization. A learning set of tooling components is described using the developed key figure system. Based on this, a set of applicable rules for workpiece-specific result determination is generated through clustering and expert evaluation. Within the following application stage, strategic orientation is quantified and workpieces of interest are described using the developed key figures. Subsequently, the retrieved information is used for automatically generating specific recommendations relying on the generated ruleset of stage one. Finally, actual experiences regarding the recommendations are gathered within stage three. Statistic learning transfers those to the generated ruleset leading to a continuously deepening knowledge base. This process enables a steady improvement in output quality. KW - Additive manufacturing KW - Laser-Powder Bed Fusion KW - L-PBF KW - Binder Jetting KW - Directed Energy Deposition Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.procir.2022.05.188 SN - 2212-8271 N1 - 55th CIRP Conference on Manufacturing Systems VL - 107 SP - 1539 EP - 1544 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Tran, Ngoc Trinh A1 - Trinh, Tu Luc A1 - Dao, Ngoc Tien A1 - Giap, Van Tan A1 - Truong, Manh Khuyen A1 - Dinh, Thuy Ha A1 - Staat, Manfred T1 - Limit and shakedown analysis of structures under random strength T2 - Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022 N2 - Direct methods comprising limit and shakedown analysis is a branch of computational mechanics. It plays a significant role in mechanical and civil engineering design. The concept of direct method aims to determinate the ultimate load bearing capacity of structures beyond the elastic range. For practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and onstraints. If strength and loading are random quantities, the problem of shakedown analysis is considered as stochastic programming. This paper presents a method so called chance constrained programming, an effective method of stochastic programming, to solve shakedown analysis problem under random condition of strength. In this our investigation, the loading is deterministic, the strength is distributed as normal or lognormal variables. KW - Reliability of structures KW - Stochastic programming KW - Chance constrained programming KW - Shakedown analysis KW - Limit analysis Y1 - 2022 SN - 978-604-357-084-7 SP - 510 EP - 518 PB - Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik) CY - Hanoi ER - TY - CHAP A1 - Weiss, Christian A1 - Heslenfeld, Jonas A1 - Saewe, Jasmin Kathrin A1 - Bremen, Sebastian A1 - Häfner, Constantin Leon T1 - Investigation on the influence of powder humidity in Laser Powder Bed Fusion (LPBF) T2 - Procedia CIRP N2 - In the Laser Powder Bed Fusion (LPBF) process, parts are built out of metal powder material by exposure of a laser beam. During handling operations of the powder material, several influencing factors can affect the properties of the powder material and therefore directly influence the processability during manufacturing. Contamination by moisture due to handling operations is one of the most critical aspects of powder quality. In order to investigate the influences of powder humidity on LPBF processing, four materials (AlSi10Mg, Ti6Al4V, 316L and IN718) are chosen for this study. The powder material is artificially humidified, subsequently characterized, manufactured into cubic samples in a miniaturized process chamber and analyzed for their relative density. The results indicate that the processability and reproducibility of parts made of AlSi10Mg and Ti6Al4V are susceptible to humidity, while IN718 and 316L are barely influenced. KW - LPBF KW - Additive Manufacturing KW - Powder Material KW - Humidity Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.procir.2022.08.102 SN - 2212-8271 N1 - Teil der Sonderausgabe: 12th CIRP Conference on Photonic Technologies [LANE 2022] VL - 111 SP - 115 EP - 120 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Riga, Evi A1 - Pitilakis, Kyriazis A1 - Butenweg, Christoph A1 - Apostolaki, Stefania A1 - Karatzetzou, Anna ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Investigating the impact of the new European Seismic Hazard Model ESHM20 on the seismic design and safety control of industrial facilities T2 - The Third European Conference on Earthquake Engineering and Seismology September 4 – September 9, 2022, Bucharest N2 - The seismic performance and safety of major European industrial facilities has a global interest for Europe, its citizens and economy. A potential major disaster at an industrial site could affect several countries, probably far beyond the country where it is located. However, the seismic design and safety assessment of these facilities is practically based on national, often outdated seismic hazard assessment studies, due to many reasons, including the absence of a reliable, commonly developed seismic hazard model for whole Europe. This important gap is no more existing, as the 2020 European Seismic Hazard Model ESHM20 was released in December 2021. In this paper we investigate the expected impact of the adoption of ESHM20 on the seismic demand for industrial facilities, through the comparison of the ESHM20 probabilistic hazard at the sites where industrial facilities are located with the respective national and European regulations. The goal of this preliminary work in the framework of Working Group 13 of the European Association for Earthquake Engineering (EAEE), is to identify potential inadequacies in the design and safety control of existing industrial facilities and to highlight the expected impact of the adoption of the new European Seismic Hazard Model on the design of new industrial facilities and the safety assessment of existing ones. KW - ESHM20, industrial facilities KW - seismic hazard KW - seismic design KW - safety control Y1 - 2022 SN - 978-973-100-533-1 SP - 3261 EP - 3270 ER -