TY - JOUR A1 - Ayed, Anis Haj A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Keinz, Jan T1 - CFD Based Improvement of the DLN Hydrogen Micromix Combustion Technology at Increased Energy Densities JF - American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) N2 - Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel within future low emission power generation. Due to the large difference in the physical properties of Hydrogen compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. Thus, the development of DLN combustion technologies is an essential and challenging task for the future of Hydrogen fuelled gas turbines. The DLN Micromix combustion principle for hydrogen fuel has been developed to significantly reduce NOx-emissions. This combustion principle is based on cross-flow mixing of air and gaseous hydrogen which reacts in multiple miniaturized diffusion-type flames. The major advantages of this combustion principle are the inherent safety against flash-back and the low NOx-emissions due to a very short residence time of reactants in the flame region of the micro-flames. The Micromix Combustion technology has been already proven experimentally and numerically for pure Hydrogen fuel operation at different energy density levels. The aim of the present study is to analyze the influence of different geometry parameter variations on the flame structure and the NOx emission and to identify the most relevant design parameters, aiming to provide a physical understanding of the Micromix flame sensitivity to the burner design and identify further optimization potential of this innovative combustion technology while increasing its energy density and making it mature enough for real gas turbine application. The study reveals great optimization potential of the Micromix Combustion technology with respect to the DLN characteristics and gives insight into the impact of geometry modifications on flame structure and NOx emission. This allows to further increase the energy density of the Micromix burners and to integrate this technology in industrial gas turbines. Y1 - 2016 SN - 2313-4402 VL - 26 IS - 3 SP - 290 EP - 303 PB - GSSRR ER - TY - JOUR A1 - Funke, Harald A1 - Keinz, Jan A1 - Kusterer, Karsten A1 - Ayed, Anis Haj A1 - Kazari, Masahide A1 - Kitajima, Junichi A1 - Horikawa, Atsushi A1 - Okada, Kunio T1 - Experimental and Numerical Study on Optimizing the Dry Low NOₓ Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications JF - Journal of Thermal Science and Engineering Applications N2 - Combined with the use of renewable energy sources for its production, hydrogen represents a possible alternative gas turbine fuel for future low-emission power generation. Due to the difference in the physical properties of hydrogen compared to other fuels such as natural gas, well-established gas turbine combustion systems cannot be directly applied to dry low NOₓ (DLN) hydrogen combustion. The DLN micromix combustion of hydrogen has been under development for many years, since it has the promise to significantly reduce NOₓ emissions. This combustion principle for air-breathing engines is based on crossflow mixing of air and gaseous hydrogen. Air and hydrogen react in multiple miniaturized diffusion-type flames with an inherent safety against flashback and with low NOₓ emissions due to a very short residence time of the reactants in the flame region. The paper presents an advanced DLN micromix hydrogen application. The experimental and numerical study shows a combustor configuration with a significantly reduced number of enlarged fuel injectors with high-thermal power output at constant energy density. Larger fuel injectors reduce manufacturing costs, are more robust and less sensitive to fuel contamination and blockage in industrial environments. The experimental and numerical results confirm the successful application of high-energy injectors, while the DLN micromix characteristics of the design point, under part-load conditions, and under off-design operation are maintained. Atmospheric test rig data on NOₓ emissions, optical flame-structure, and combustor material temperatures are compared to numerical simulations and show good agreement. The impact of the applied scaling and design laws on the miniaturized micromix flamelets is particularly investigated numerically for the resulting flow field, the flame-structure, and NOₓ formation. Y1 - 2016 U6 - https://doi.org/10.1115/1.4034849 SN - 1948-5093 N1 - TSEA-15-1227 VL - 9 IS - 2 SP - 021001 EP - 021001-10 PB - ASME CY - New York, NY ER - TY - JOUR A1 - Wollert, Jörg T1 - OS-Funktionalität ohne OS für das IoT JF - Design & Elektronik N2 - Low-end-Embedded-Plattformen stellen eine hohe Anforderung an die Entscheidungsfähigkeit des Entwicklers: Zum nächstgrößeren Prozessor greifen und ein Betriebssystem benutzen oder doch besser auf das Betriebssystem verzichten? Die Frage lässt sich einfach beantworten: Einen Nanokernel verwenden und das Embedded-System mit einem minimalen Footprint realisieren. Adam Dunkels Protothreads sind eine ausgesprochen effiziente Art, Mikrocontroller gut strukturiert zu programmieren und gleichzeitig auf Overhead zu verzichten. So können auch mit kleinen 8-bit-Prozessoren anspruchsvolle Aufgaben in einem Thread-Modell bearbeitet werden. Man muss also nicht immer das Rad neu erfinden oder gleich auf Linux-basierte Systeme zurückgreifen. KW - Designpraxis KW - Minimal-Ansatz für Embedded-Systeme Y1 - 2016 SN - 0933-8667 IS - 11 SP - 85 EP - 90 PB - WEKA-Fachmedien CY - München ER - TY - JOUR A1 - Bung, Daniel Bernhard A1 - Valero, Daniel T1 - Optical flow estimation in aerated flows JF - Journal of Hydraulic Research N2 - Optical flow estimation is known from Computer Vision where it is used to determine obstacle movements through a sequence of images following an assumption of brightness conservation. This paper presents the first study on application of the optical flow method to aerated stepped spillway flows. For this purpose, the flow is captured with a high-speed camera and illuminated with a synchronized LED light source. The flow velocities, obtained using a basic Horn–Schunck method for estimation of the optical flow coupled with an image pyramid multi-resolution approach for image filtering, compare well with data from intrusive conductivity probe measurements. Application of the Horn–Schunck method yields densely populated flow field data sets with velocity information for every pixel. It is found that the image pyramid approach has the most significant effect on the accuracy compared to other image processing techniques. However, the final results show some dependency on the pixel intensity distribution, with better accuracy found for grey values between 100 and 150. Y1 - 2016 U6 - https://doi.org/10.1080/00221686.2016.1173600 VL - 54 IS - 5 SP - 575 EP - 580 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Wollert, Jörg A1 - Booke, Andreas T1 - IoT von der Stange JF - elektronik N2 - Heute sollte am besten jedes Gerät in die große Rechnerwolke eingebettet werden. Doch so einfach ist das nicht, denn Cloud ist viel mehr als nur das Internet der Dinge. Als Anwender muss man sich also fragen, welche Dienste man möchte und welchem Anbieter man sein Vertrauen schenkt. KW - Einbetten in das Internet der Dinge Y1 - 2016 IS - 21 (2016) SP - 30 EP - 37 PB - WEKA-Fachmedien CY - München ER - TY - JOUR A1 - Albracht, Kirsten A1 - Arampatzis, Adamantios T1 - Influence of the mechanical properties of the muscle-tendon unit on force generation in runners with different running economy JF - Biological Cybernetics Y1 - 2006 U6 - https://doi.org/10.1007/s00422-006-0070-z SN - 1432-0770 VL - 95 IS - 1 SP - 87 EP - 96 ER - TY - JOUR A1 - Arampatzis, Adamantios A1 - Karamanidis, Kiros A1 - Albracht, Kirsten T1 - Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude JF - Journal of Experimental Biology Y1 - 2007 U6 - https://doi.org/10.1242/jeb.003814 SN - 0022-0949 VL - 210 IS - 15 SP - 2743 EP - 2753 ER - TY - JOUR A1 - Albracht, Kirsten A1 - Arampatzis, A. A1 - Baltzopoulos, V. T1 - Assessment of muscle volume and physiological cross-sectional area of the human triceps surae muscle in vivo JF - Journal of Biomechanics Y1 - 2008 U6 - https://doi.org/10.1016/j.jbiomech.2008.04.020 SN - 0021-9290 VL - 41 SP - 2211 EP - 2218 ER - TY - JOUR A1 - Arampatzis, Adamantios A1 - Karamanidis, Kiros A1 - Mademli, Lida A1 - Albracht, Kirsten T1 - Plasticity of the human tendon to short and long-term mechanical loading JF - Exercise and Sport Sciences Reviews Y1 - 2009 U6 - https://doi.org/10.1097/JES.0b013e31819c2e1d SN - 1538-3008 VL - 37 IS - 2 SP - 66 EP - 72 ER - TY - JOUR A1 - Aggeloussis, Nickos A1 - Giannakou, Erasmia A1 - Albracht, Kirsten A1 - Arampatzis, Adamantios T1 - Reproducibility of fascicle length and pennation angle of gastrocnemius medialis in human gait in vivo JF - Gait and Posture N2 - The purpose of the current study was to examine the reproducibility of fascicle length and pennation angle of gastrocnemius medialis while human walking. To the best of our knowledge, this is the first study of the reproducibility of fascicle length and pennation angle of gastrocnemius medialis in vivo during human gait. Twelve males performed 10 gait trials on a treadmill, in 2 separate days. B-mode ultrasonography, with the ultrasound probe firmly adjusted in the transverse and frontal planes using a special cast, was used to measure the fascicle length and the pennation angle of the gastrocnemius medialis (GM). A Vicon 624 system with three cameras operating at 120 Hz was also used to record the ankle and knee joint angles. The results showed that measurements of fascicle length and pennation angle showed high reproducibility during the gait cycle, both within the same day and between different days. Moreover, the root mean square differences between the repeated waveforms of both variables were very small, compared with their ranges (fascicle length: RMS = ∼3 mm, range: 38–63 mm; pennation angle: RMS = ∼1.5°, range: 22–32°). However, their reproducibility was lower compared to the joint angles. It was found that representative data have to be derived by a wide number of gait trials (fascicle length ∼six trials, pennation angle more than 10 trials), to assure the reliability of the fascicle length and pennation angle in human gait. Y1 - 2010 U6 - https://doi.org/10.1016/j.gaitpost.2009.08.249 SN - 0966-6362 VL - 31 IS - 1 SP - 73 EP - 77 PB - Elsevier CY - Amsterdam ER -