TY - CHAP A1 - Hippe, Jonas A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten T1 - Propulsion System Qualification of a 25 kg VTOL-UAV: Hover Performance of Single and Coaxial Rotors and Wind-Tunnel Experiments on Cruise Propellers T2 - Deutscher Luft- und Raumfahrtkongress - DLRK 2020 N2 - This paper presents an approach for UAV propulsion system qualification and validation on the example of FH Aachen's 25 kg cargo UAV "PhoenAIX". Thrust and power consumption are the most important aspects of a propulsion system's layout. In the initial design phase, manufacturers' data has to be trusted, but the validation of components is an essential step in the design process. This process is presented in this paper. The vertical takeoff system is designed for efficient hover; therefore, performance under static conditions is paramount. Because an octo-copter layout with coaxial rotors is considered, the impact of this design choice is analyzed. Data on thrust, voltage stability, power consumption, rotational speed, and temperature development of motors and controllers are presented for different rotors. The fixed-wing propulsion system is designed for efficient cruise flight. At the same time, a certain static thrust has to be provided, as the aircraft needs to accelerate to cruise speed. As for the hover-system, data on different propellers is compared. The measurements were taken for static conditions, as well as for different inflow velocities, using the FH-Aachen's wind-tunnel. Y1 - 2020 N1 - 69. Deutscher Luft- und Raumfahrtkongress 2020, 1. September 2020 - 3. September 2020, online ER - TY - CHAP A1 - Geiben, Benedikt A1 - Götten, Falk A1 - Havermann, Marc T1 - Aerodynamic analysis of a winged sub-orbital spaceplane N2 - This paper primarily presents an aerodynamic CFD analysis of a winged spaceplane geometry based on the Japanese Space Walker proposal. StarCCM was used to calculate aerodynamic coefficients for a typical space flight trajectory including super-, trans- and subsonic Mach numbers and two angles of attack. Since the solution of the RANS equations in such supersonic flight regimes is still computationally expensive, inviscid Euler simulations can principally lead to a significant reduction in computational effort. The impact on accuracy of aerodynamic properties is further analysed by comparing both methods for different flight regimes up to a Mach number of 4. Y1 - 2020 U6 - https://doi.org/10.25967/530170 N1 - 69. Deutscher Luft- und Raumfahrtkongress 2020, 1. September 2020 - 3. September 2020, online PB - DGLR CY - Bonn ER - TY - JOUR A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft JF - Journal of Aircraft N2 - Until electric energy storage systems are ready to allow fully electric aircraft, the combination of combustion engine and electric motor as a hybrid-electric propulsion system seems to be a promising intermediate solution. Consequently, the design space for future aircraft is expanded considerably, as serial hybrid-electric, parallel hybrid-electric, fully electric, and conventional propulsion systems must all be considered. While the best propulsion system depends on a multitude of requirements and considerations, trends can be observed for certain types of aircraft and certain types of missions. This Paper provides insight into some factors that drive a new design toward either conventional or hybrid propulsion systems. General aviation aircraft, regional transport aircraft vertical takeoff and landing air taxis, and unmanned aerial vehicles are chosen as case studies. Typical missions for each class are considered, and the aircraft are analyzed regarding their takeoff mass and primary energy consumption. For these case studies, a high-level approach is chosen, using an initial sizing methodology. Only parallel-hybrid-electric powertrains are taken into account. Aeropropulsive interaction effects are neglected. Results indicate that hybrid-electric propulsion systems should be considered if the propulsion system is sized by short-duration power constraints. However, if the propulsion system is sized by a continuous power requirement, hybrid-electric systems offer hardly any benefit. Y1 - 2020 U6 - https://doi.org/10.2514/1.C035897 SN - 1533-3868 VL - 57 IS - 5 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Meyer, Max-Arno A1 - Granrath, Christian A1 - Feyerl, Günter A1 - Richenhagen, Johannes A1 - Kaths, Jakob A1 - Andert, Jakob T1 - Closed-loop platoon simulation with cooperative intelligent transportation systems based on vehicle-to-X communication JF - Simulation Modelling Practice and Theory Y1 - 2021 U6 - https://doi.org/10.1016/j.simpat.2020.102173 SN - 1569-190X VL - 106 IS - Art. 102173 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Seefeldt, Patric A1 - Dachwald, Bernd T1 - Temperature increase on folded solar sail membranes JF - Advances in Space Research Y1 - 2021 U6 - https://doi.org/10.1016/j.asr.2020.09.026 SN - 0273-1177 VL - 67 IS - 9 SP - 2688 EP - 2695 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wild, Dominik A1 - Schrezenmeier, Johannes A1 - Czupalla, Markus A1 - Förstner, Roger T1 - Thermal Characterization of additive manufactured Integral Structures for Phase Change Applications JF - 2020 International Conference on Environmental Systems N2 - “Infused Thermal Solutions” (ITS) introduces a method for passive thermal control to stabilize structural components thermally without active heating and cooling systems, by using phase change material (PCM) in combination with lattice – both embedded into an additive manufactured integral structure. The technology is currently under development. This paper presents the results of the thermal property measurements performed on additive manufactured ITS breadboards. Within the breadboard campaigns key characteristics of the additive manufactured specimens were derived: Mechanical parameters: specimen impermeability, minimum wall thickness, lattice structure, subsequent heat treatment. Thermal properties: thermo-optical surface properties of the additive manufactured raw material, thermal conductivity and specific heat capacity measurements. As a conclusion the paper introduces an overview of potential ITS hardware applications, expected to increase the thermal performance. Y1 - 2020 PB - Texas Tech University ER - TY - JOUR A1 - Hein, Andreas M. A1 - Eubanks, T. Marshall A1 - Hibberd, Adam A1 - Fries, Dan A1 - Schneider, Jean A1 - Lingam, Manasvi A1 - Kennedy, Robert A1 - Perakis, Nikolaos A1 - Dachwald, Bernd A1 - Kervella, Pierre T1 - Interstellar Now! Missions to and sample returns from nearby interstellar objects N2 - The recently discovered first high velocity hyperbolic objects passing through the Solar System, 1I/'Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Interstellar objects likely formed very far from the solar system in both time and space; their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system. Y1 - 2020 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Maurischat, Andreas A1 - Perkins, Rudolph T1 - Taylor coefficients of Anderson generating functions and Drinfeld torsion extensions N2 - We generalize our work on Carlitz prime power torsion extension to torsion extensions of Drinfeld modules of arbitrary rank. As in the Carlitz case, we give a description of these extensions in terms of evaluations of Anderson generating functions and their hyperderivatives at roots of unity. We also give a direct proof that the image of the Galois representation attached to the p-adic Tate module lies in the p-adic points of the motivic Galois group. This is a generalization of the corresponding result of Chang and Papanikolas for the t-adic case. Y1 - 2020 U6 - https://doi.org/10.1142/S1793042122500099 IS - Vol. 18, No. 01 SP - 113 EP - 130 PB - World Scientific CY - Singapur ER - TY - JOUR A1 - Götten, Falk A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, Matthew A1 - Bil, Cees T1 - Airfoil drag at low-to-medium reynolds numbers: A novel estimation method JF - AIAA Journal N2 - This paper presents a novel method for airfoil drag estimation at Reynolds numbers between 4×10⁵ and 4×10⁶. The novel method is based on a systematic study of 40 airfoils applying over 600 numerical simulations and considering natural transition. The influence of the airfoil thickness-to-chord ratio, camber, and freestream Reynolds number on both friction and pressure drag is analyzed in detail. Natural transition significantly affects drag characteristics and leads to distinct drag minima for different Reynolds numbers and thickness-to-chord ratios. The results of the systematic study are used to develop empirical correlations that can accurately predict an airfoil drag at low-lift conditions. The new approach estimates a transition location based on airfoil thickness-to-chord ratio, camber, and Reynolds number. It uses the transition location in a mixed laminar–turbulent skin-friction calculation, and corrects the skin-friction coefficient for separation effects. Pressure drag is estimated separately based on correlations of thickness-to-chord ratio, camber, and Reynolds number. The novel method shows excellent accuracy when compared with wind-tunnel measurements of multiple airfoils. It is easily integrable into existing aircraft design environments and is highly beneficial in the conceptual design stage. Y1 - 2020 U6 - https://doi.org/10.2514/1.J058983 SN - 1533-385X VL - 58 IS - 7 SP - 2791 EP - 2805 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Hoeveler, B. A1 - Bauknecht, André A1 - Wolf, C. Christian A1 - Janser, Frank T1 - Wind-Tunnel Study of a Wing-Embedded Lifting Fan Remaining Open in Cruise Flight JF - Journal of Aircraft N2 - It is investigated whether a nonrotating lifting fan remaining uncovered during cruise flight, as opposed to being covered by a shutter system, can be realized with limited additional drag and loss of lift during cruise flight. A wind-tunnel study of a wing-embedded lifting fan has been conducted at the Side Wind Test Facility Göttingen of DLR, German Aerospace Center in Göttingen using force, pressure, and stereoscopic particle image velocimetry techniques. The study showed that a step on the lower side of the wing in front of the lifting fan duct increases the lift-to-drag ratio of the whole model by up to 25% for all positive angles of attack. Different sizes and inclinations of the step had limited influence on the surface pressure distribution. The data indicate that these parameters can be optimized to maximize the lift-to-drag ratio. A doubling of the curvature radius of the lifting fan duct inlet lip on the upper side of the wing affected the lift-to-drag ratio by less than 1%. The lifting fan duct inlet curvature can therefore be optimized to maximize the vertical fan thrust of the rotating lifting fan during hovering without affecting the cruise flight performance with a nonrotating fan. Y1 - 2020 U6 - https://doi.org/10.2514/1.C035422 SN - 1533-3868 VL - 57 IS - 4 PB - AIAA CY - Reston, Va. ER -