TY - JOUR A1 - Rachinger, Michael A1 - Bauch, Melanie A1 - Strittmatter, Axel A1 - Bongaerts, Johannes A1 - Evers, Stefan A1 - Maurer, Karl-Heinz A1 - Daniel, Rolf A1 - Liebl, Wolfgang A1 - Liesegang, Heiko A1 - Ehrenreich, Armin T1 - Size unlimited markerless deletions by a transconjugative plasmid-system in Bacillus licheniformis JF - Journal of biotechnology Y1 - 2013 SN - 1873-4863 (E-Journal); 0168-1656 (Print) VL - Vol. 164 IS - Iss. 4 SP - 365 EP - 369 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Voigt, Birgit A1 - Schroeter, Rebecca A1 - Jürgen, Britta A1 - Albrecht, Dirk A1 - Evers, Stefan A1 - Bongaerts, Johannes A1 - Maurer, Karl-Heinz A1 - Schweder, Thomas A1 - Hecker, Michael T1 - The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon JF - Proteomics Y1 - 2013 SN - 1615-9861 (E-Journal); 1615-9853 (Print) VL - Vol. 13 IS - Iss. 14 SP - 2140 EP - 2146 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Wilming, Anja A1 - Begemann, Jens A1 - Kuhne, Stefan A1 - Regestein, Lars A1 - Bongaerts, Johannes A1 - Evers, Stefan A1 - Maurer, Karl-Heinz A1 - Büchs, Jochen T1 - Metabolic studies of γ-polyglutamic acid production in Bacillus licheniformis by small-scale continuous cultivations JF - Biochemical engineering journal Y1 - 2013 SN - 1873-295X (E-Journal); 1369-703X (Print) VL - Vol. 73 SP - 29 EP - 37 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Scheele, Sandra A1 - Oertel, Dan A1 - Bongaerts, Johannes A1 - Evers, Stefan A1 - Hellmuth, Hendrik A1 - Maurer, Karl-Heinz A1 - Bott, Michael A1 - Freudl, Roland T1 - Secretory production of an FAD cofactor-containing cytosolic enzyme (sorbitol–xylitol oxidase from Streptomyces coelicolor) using the twin-arginine translocation (Tat) pathway of Corynebacterium glutamicum JF - Microbial biotechnology Y1 - 2013 SN - 1751-7915 SP - 202 EP - 206 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Abulnaga, El-Hussiny A1 - Pinkenburg, Olaf A1 - Schiffels, Johannes A1 - E-Refai, Ahmed A1 - Buckel, Wolfgang A1 - Selmer, Thorsten T1 - Effect of an Oxygen-Tolerant Bifurcating Butyryl Coenzyme A Dehydrogenase/Electron-Transferring Flavoprotein Complex from Clostridium difficile on Butyrate Production in Escherichia coli JF - Journal of bacteriology Y1 - 2013 SN - 1098-5530 [E-Journal] SN - 0021-9193 [Print] VL - 195 IS - 16 SP - 3704 EP - 3713 ER - TY - JOUR A1 - Aboulnaga, E. H. A1 - Pinkenburg, O. A1 - Schiffels, Johannes A1 - El-Refai, A. A1 - Buckel, W. A1 - Selmer, Thorsten T1 - Butyrate production in Escherichia coli: Exploitation of an oxygen tolerant bifurcating butyryl-CoA dehydrogenase/electron transferring flavoprotein complex from Clostridium difficile JF - Journal of bacteriology. June 14, 2013 Y1 - 2013 SN - 1098-5530 (E-Journal) ; 0021-9193 (Print) SP - Epub ahead of print ER - TY - JOUR A1 - Schiffels, Johannes A1 - Pinkenburg, Olaf A1 - Schelden, Maximilian A1 - Aboulnaga, El-Hussiny A. A. A1 - Baumann, Marcus A1 - Selmer, Thorsten T1 - An innovative cloning platform enables large-scale production and maturation of an oxygen-tolerant [NiFe]-hydrogenase from cupriavidus necator in Escherichia coli JF - PLOS one. 2013 Y1 - 2013 U6 - http://dx.doi.org/10.1371/journal.pone.0068812 SN - 1932-6203 PB - Public Library of Science CY - San Francisco, California ER - TY - JOUR A1 - Huck, Christina A1 - Schiffels, Johannes A1 - Herrera, Cony N. A1 - Schelden, Maximilian A1 - Selmer, Thorsten A1 - Poghossian, Arshak A1 - Baumann, Marcus A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Metabolic responses of Escherichia coli upon glucose pulses captured by a capacitive field-effect sensor JF - Physica Status Solidi (A) N2 - Living cells are complex biological systems transforming metabolites taken up from the surrounding medium. Monitoring the responses of such cells to certain substrate concentrations is a challenging task and offers possibilities to gain insight into the vitality of a community influenced by the growth environment. Cell-based sensors represent a promising platform for monitoring the metabolic activity and thus, the “welfare” of relevant organisms. In the present study, metabolic responses of the model bacterium Escherichia coli in suspension, layered onto a capacitive field-effect structure, were examined to pulses of glucose in the concentration range between 0.05 and 2 mM. It was found that acidification of the surrounding medium takes place immediately after glucose addition and follows Michaelis–Menten kinetic behavior as a function of the glucose concentration. In future, the presented setup can, therefore, be used to study substrate specificities on the enzymatic level and may as well be used to perform investigations of more complex metabolic responses. Conclusions and perspectives highlighting this system are discussed. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200900 SN - 0031-8965 VL - 210 IS - 5 SP - 926 EP - 931 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Bäcker, Matthias A1 - Rakowski, D. A1 - Poghossian, Arshak A1 - Biselli, Manfred A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Chip-based amperometric enzyme sensor system for monitoring of bioprocesses by flow-injection analysis JF - Journal of Biotechnology N2 - A microfluidic chip integrating amperometric enzyme sensors for the detection of glucose, glutamate and glutamine in cell-culture fermentation processes has been developed. The enzymes glucose oxidase, glutamate oxidase and glutaminase were immobilized by means of cross-linking with glutaraldehyde on platinum thin-film electrodes integrated within a microfluidic channel. The biosensor chip was coupled to a flow-injection analysis system for electrochemical characterization of the sensors. The sensors have been characterized in terms of sensitivity, linear working range and detection limit. The sensitivity evaluated from the respective peak areas was 1.47, 3.68 and 0.28 μAs/mM for the glucose, glutamate and glutamine sensor, respectively. The calibration curves were linear up to a concentration of 20 mM glucose and glutamine and up to 10 mM for glutamate. The lower detection limit amounted to be 0.05 mM for the glucose and glutamate sensor, respectively, and 0.1 mM for the glutamine sensor. Experiments in cell-culture medium have demonstrated a good correlation between the glutamate, glutamine and glucose concentrations measured with the chip-based biosensors in a differential-mode and the commercially available instrumentation. The obtained results demonstrate the feasibility of the realized microfluidic biosensor chip for monitoring of bioprocesses. Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.jbiotec.2012.03.014 SN - 0168-1656 VL - 163 IS - 4 SP - 371 EP - 376 PB - Elsevier CY - Amsterdam ER -