TY - CHAP A1 - Blanke, Tobias A1 - Schmidt, Katharina S. A1 - Göttsche, Joachim A1 - Döring, Bernd A1 - Frisch, Jérôme A1 - van Treeck, Christoph ED - Weidlich, Anke ED - Neumann, Dirk ED - Gust, Gunther ED - Staudt, Philipp ED - Schäfer, Mirko T1 - Time series aggregation for energy system design: review and extension of modelling seasonal storages T2 - Energy Informatics N2 - Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, “Time series aggregation for energy system design: Modeling seasonal storage”, has developed a seasonal storage model to address this issue. Simultaneously, the paper “Optimal design of multi-energy systems with seasonal storage” has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results. KW - Energy system KW - Renewable energy KW - Mixed integer linear programming (MILP) KW - Typical periods KW - Time-series aggregation Y1 - 2022 U6 - https://doi.org/10.1186/s42162-022-00208-5 SN - 2520-8942 N1 - 11th DACH+ Conference on Energy Informatics, 15-16 September 2022, Freiburg, Germany VL - 5 IS - 1, Article number: 17 PB - Springer Nature ER - TY - JOUR A1 - Peere, Wouter A1 - Blanke, Tobias ED - Vernon, Chris T1 - GHEtool: An open-source tool for borefield sizing in Python JF - Journal of Open Source Software N2 - GHEtool is a Python package that contains all the functionalities needed to deal with borefield design. It is developed for both researchers and practitioners. The core of this package is the automated sizing of borefield under different conditions. The sizing of a borefield is typically slow due to the high complexity of the mathematical background. Because this tool has a lot of precalculated data, GHEtool can size a borefield in the order of tenths of milliseconds. This sizing typically takes the order of minutes. Therefore, this tool is suited for being implemented in typical workflows where iterations are required. GHEtool also comes with a graphical user interface (GUI). This GUI is prebuilt as an exe-file because this provides access to all the functionalities without coding. A setup to install the GUI at the user-defined place is also implemented and available at: https://www.mech.kuleuven.be/en/tme/research/thermal_systems/tools/ghetool. KW - geothermal KW - energy KW - borefields KW - sizing Y1 - 2022 U6 - https://doi.org/10.21105/joss.04406 SN - 2475-9066 VL - 7 IS - 76 SP - 1 EP - 4, 4406 ER - TY - JOUR A1 - Gorzalka, Philip A1 - Schmiedt, Jacob Estevam A1 - Schorn, Christian T1 - Automated Generation of an Energy Simulation Model for an Existing Building from UAV Imagery JF - Buildings N2 - An approach to automatically generate a dynamic energy simulation model in Modelica for a single existing building is presented. It aims at collecting data about the status quo in the preparation of energy retrofits with low effort and costs. The proposed method starts from a polygon model of the outer building envelope obtained from photogrammetrically generated point clouds. The open-source tools TEASER and AixLib are used for data enrichment and model generation. A case study was conducted on a single-family house. The resulting model can accurately reproduce the internal air temperatures during synthetical heating up and cooling down. Modelled and measured whole building heat transfer coefficients (HTC) agree within a 12% range. A sensitivity analysis emphasises the importance of accurate window characterisations and justifies the use of a very simplified interior geometry. Uncertainties arising from the use of archetype U-values are estimated by comparing different typologies, with best- and worst-case estimates showing differences in pre-retrofit heat demand of about ±20% to the average; however, as the assumptions made are permitted by some national standards, the method is already close to practical applicability and opens up a path to quickly estimate possible financial and energy savings after refurbishment. KW - Modelica KW - heat transfer coefficient KW - heat demand KW - building energy modelling KW - building energy simulation Y1 - 2021 U6 - https://doi.org/10.3390/buildings11090380 SN - 2075-5309 N1 - This article belongs to the Special Issue "Application of Computer Technology in Buildings" VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Göttsche, Joachim A1 - Sauerborn, Markus A1 - Kaufhold, O. T1 - High Concentration Solar Collectors T2 - Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications N2 - Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this article, different criteria for the choice of technology are analyzed in detail. KW - Central receiver system KW - Concentrated solar collector KW - Solar dish KW - Solar concentration Y1 - 2022 SN - 978-0-12-819734-9 U6 - https://doi.org/10.1016/B978-0-12-819727-1.00058-3 SP - 198 EP - 245 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Rau, Christoph A1 - Sattler, Johannes, Christoph A1 - Anthrakidis, Anette A1 - Teixeira Boura, Cristiano José A1 - O’Connor, B. A1 - Chico Caminos, R.A. A1 - Rendón, C. A1 - Hilger, P. T1 - Concentrating solar power T2 - Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications N2 - The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world. KW - Central receiver power plant KW - Concentrated systems KW - Gas turbine KW - Hybridization KW - Power conversion systems Y1 - 2022 SN - 978-0-12-819734-9 SP - 670 EP - 724 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hagenkamp, Markus A1 - Blanke, Tobias A1 - Döring, Bernd T1 - Thermoelectric building temperature control: a potential assessment JF - International Journal of Energy and Environmental Engineering N2 - This study focuses on thermoelectric elements (TEE) as an alternative for room temperature control. TEE are semi-conductor devices that can provide heating and cooling via a heat pump effect without direct noise emissions and no refrigerant use. An efficiency evaluation of the optimal operating mode is carried out for different numbers of TEE, ambient temperatures, and heating loads. The influence of an additional heat recovery unit on system efficiency and an unevenly distributed heating demand are examined. The results show that TEE can provide heat at a coefficient of performance (COP) greater than one especially for small heating demands and high ambient temperatures. The efficiency increases with the number of elements in the system and is subject to economies of scale. The best COP exceeds six at optimal operating conditions. An additional heat recovery unit proves beneficial for low ambient temperatures and systems with few TEE. It makes COPs above one possible at ambient temperatures below 0 ∘C. The effect increases efficiency by maximal 0.81 (from 1.90 to 2.71) at ambient temperature 5 K below room temperature and heating demand Q˙h=100W but is subject to diseconomies of scale. Thermoelectric technology is a valuable option for electricity-based heat supply and can provide cooling and ventilation functions. A careful system design as well as an additional heat recovery unit significantly benefits the performance. This makes TEE superior to direct current heating systems and competitive to heat pumps for small scale applications with focus on avoiding noise and harmful refrigerants. Y1 - 2021 U6 - https://doi.org/10.1007/s40095-021-00424-x N1 - Corresponding author: Markus Hagenkamp VL - 13 SP - 241 EP - 254 PB - Springer CY - Berlin ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Rau, Christoph A1 - Sattler, Johannes, Christoph A1 - Anthrakidis, Anette A1 - Teixeira Boura, Cristiano José A1 - O’Connor, B. A1 - Caminos, R.A. Chico A1 - Rendón, C. A1 - Hilger, P. T1 - Concentrating Solar Power T2 - Earth systems and environmental sciences N2 - The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world. KW - Central receiver power plant KW - Concentrated systems KW - Concentrating solar power KW - Fresnel power plant KW - Gas turbine Y1 - 2021 SN - 978-0-12-409548-9 U6 - https://doi.org/10.1016/B978-0-12-819727-1.00089-3 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Blanke, Tobias A1 - Hagenkamp, Markus A1 - Döring, Bernd A1 - Göttsche, Joachim A1 - Reger, Vitali A1 - Kuhnhenne, Markus T1 - Net-exergetic, hydraulic and thermal optimization of coaxial heat exchangers using fixed flow conditions instead of fixed flow rates JF - Geothermal Energy N2 - Previous studies optimized the dimensions of coaxial heat exchangers using constant mass fow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar fow types. In contrast, in this study, fow conditions in the circular ring are kept constant (a set of fxed Reynolds numbers) during optimization. This approach ensures fxed fow conditions and prevents inappropriately high or low mass fow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic efort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass fow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefcients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy diference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy fux and hydraulic efort. The Reynolds number in the circular ring is instead of the mass fow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar fow and 60% for turbulent fow scenarios. Net-exergetic optimization shows a predominant infuence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the fow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics. Y1 - 2021 U6 - https://doi.org/10.1186/s40517-021-00201-3 SN - 2195-9706 N1 - Corresponding author: Tobias Blanke VL - 9 IS - Article number: 19 PB - Springer CY - Berlin ER - TY - CHAP A1 - El Moussaoui, Noureddine A1 - Kassmi, Khalil A1 - Alexopoulos, Spiros A1 - Schwarzer, Klemens A1 - Chayeb, Hamid A1 - Bachiri, Najib T1 - Simulation studies on a new innovative design of a hybrid solar distiller MSDH alimented with a thermal and photovoltaic energy T2 - Materialstoday: Proceedings N2 - In this paper, we present the structure, the simulation the operation of a multi-stage, hybrid solar desalination system (MSDH), powered by thermal and photovoltaic (PV) (MSDH) energy. The MSDH system consists of a lower basin, eight horizontal stages, a field of four flat thermal collectors with a total area of 8.4 m2, 3 Kw PV panels and solar batteries. During the day the system is heated by thermal energy, and at night by heating resistors, powered by solar batteries. These batteries are charged by the photovoltaic panels during the day. More specifically, during the day and at night, we analyse the temperature of the stages and the production of distilled water according to the solar irradiation intensity and the electric heating power, supplied by the solar batteries. The simulations were carried out in the meteorological conditions of the winter month (February 2020), presenting intensities of irradiance and ambient temperature reaching 824 W/m2 and 23 °C respectively. The results obtained show that during the day the system is heated by the thermal collectors, the temperature of the stages and the quantity of water produced reach 80 °C and 30 Kg respectively. At night, from 6p.m. the system is heated by the electric energy stored in the batteries, the temperature of the stages and the quantity of water produced reach respectively 90 °C and 104 Kg for an electric heating power of 2 Kw. Moreover, when the electric power varies from 1 Kw to 3 Kw the quantity of water produced varies from 92 Kg to 134 Kg. The analysis of these results and their comparison with conventional solar thermal desalination systems shows a clear improvement both in the heating of the stages, by 10%, and in the quantity of water produced by a factor of 3. Y1 - 2021 U6 - https://doi.org/10.1016/j.matpr.2021.03.115 SN - 2214-7853 N1 - The Fourth edition of the International Conference on Materials & Environmental Science (ICMES 2020), virtual conference, November 18-28, 2020, Morocco VL - 45 IS - 8 SP - 7653 EP - 7660 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Rendon, Carlos A1 - Schwager, Christian A1 - Ghiasi, Mona A1 - Schmitz, Pascal A1 - Bohang, Fakhri A1 - Caminos, Ricardo Alexander Chico A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Modeling and upscaling of a pilot bayonettube reactor for indirect solar mixed methane reforming T2 - AIP Conference Proceedings N2 - A 16.77 kW thermal power bayonet-tube reactor for the mixed reforming of methane using solar energy has been designed and modeled. A test bench for the experimental tests has been installed at the Synlight facility in Juelich, Germany and has just been commissioned. This paper presents the solar-heated reactor design for a combined steam and dry reforming as well as a scaled-up process simulation of a solar reforming plant for methanol production. Solar power towers are capable of providing large amounts of heat to drive high-endothermic reactions, and their integration with thermochemical processes shows a promising future. In the designed bayonet-tube reactor, the conventional burner arrangement for the combustion of natural gas has been substituted by a continuous 930 °C hot air stream, provided by means of a solar heated air receiver, a ceramic thermal storage and an auxiliary firing system. Inside the solar-heated reactor, the heat is transferred by means of convective mechanism mainly; instead of radiation mechanism as typically prevailing in fossil-based industrial reforming processes. A scaled-up solar reforming plant of 50.5 MWth was designed and simulated in Dymola® and AspenPlus®. In comparison to a fossil-based industrial reforming process of the same thermal capacity, a solar reforming plant with thermal storage promises a reduction up to 57 % of annual natural gas consumption in regions with annual DNI-value of 2349 kWh/m2. The benchmark solar reforming plant contributes to a CO2 avoidance of approx. 79 kilotons per year. This facility can produce a nominal output of 734.4 t of synthesis gas and out of this 530 t of methanol a day. Y1 - 2020 U6 - https://doi.org/10.1063/5.0029974 N1 - SOLARPACES 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems, 1–4 October 2019, Daegu, South Korea IS - 2303 SP - 170012-1 EP - 170012-9 ER -