TY - CHAP A1 - Kreyer, Jörg A1 - Müller, Marvin A1 - Esch, Thomas T1 - A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude N2 - In addition to very high safety and reliability requirements, the design of internal combustion engines (ICE) in aviation focuses on economic efficiency. The objective must be to design the aircraft powertrain optimized for a specific flight mission with respect to fuel consumption and specific engine power. Against this background, expert tools provide valuable decision-making assistance for the customer. In this paper, a mathematical calculation model for the fuel consumption of aircraft ICE is presented. This model enables the derivation of fuel consumption maps for different engine configurations. Depending on the flight conditions and based on these maps, the current and the integrated fuel consumption for freely definable flight emissions is calculated. For that purpose, an interpolation method is used, that has been optimized for accuracy and calculation time. The mission boundary conditions flight altitude and power requirement of the ICE form the basis for this calculation. The mathematical fuel consumption model is embedded in a parent program. This parent program presents the simulated fuel consumption by means of an example flight mission for a representative airplane. The focus of the work is therefore on reproducing exact consumption data for flight operations. By use of the empirical approaches according to Gagg-Farrar [1] the power and fuel consumption as a function of the flight altitude are determined. To substantiate this approaches, a 1-D ICE model based on the multi-physical simulation tool GT-Suite® has been created. This 1-D engine model offers the possibility to analyze the filling and gas change processes, the internal combustion as well as heat and friction losses for an ICE under altitude environmental conditions. Performance measurements on a dynamometer at sea level for a naturally aspirated ICE with a displacement of 1211 ccm used in an aviation aircraft has been done to validate the 1-D ICE model. To check the plausibility of the empirical approaches with respect to the fuel consumption and performance adjustment for the flight altitude an analysis of the ICE efficiency chain of the 1-D engine model is done. In addition, a comparison of literature and manufacturer data with the simulation results is presented. Y1 - 2020 U6 - https://doi.org/10.25967/490162 N1 - 68. Deutscher Luft- und Raumfahrtkongress 30.09.-02.10.2019, Darmstadt PB - DGLR CY - Bonn ER - TY - CHAP A1 - Finger, Felix A1 - Braun, Carsten A1 - Bil, Cees T1 - Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft T2 - AIAA Scitech 2020 Forum N2 - As battery technologies advance, electric propulsion concepts are on the edge of disrupting aviation markets. However, until electric energy storage systems are ready to allow fully electric aircraft, the combination of combustion engine and electric motor as a hybrid-electric propulsion system seems to be a promising intermediate solution. Consequently, the design space for future aircraft is expanded considerably, as serial-hybrid-, parallel-hybrid-, fully-electric, and conventional propulsion systems must all be considered. While the best propulsion system depends on a multitude of requirements and considerations, trends can be observed for certain types of aircraft and certain types of missions. This paper provides insight into some factors that drive a new design towards either conventional or hybrid propulsion systems. General aviation aircraft, VTOL air taxis, transport aircraft, and UAVs are chosen as case studies. Typical missions for each class are considered, and the aircraft are analyzed regarding their take-off mass and primary energy consumption. For these case studies, a high-level approach is chosen, using an initial sizing methodology. Results indicate that hybrid-electric propulsion systems should be considered if the propulsion system is sized by short-duration power constraints (e.g. take-off, climb). However, if the propulsion system is sized by a continuous power requirement (e.g. cruise), hybrid-electric systems offer hardly any benefit. Y1 - 2020 U6 - https://doi.org/10.2514/6.2020-1502 N1 - AIAA Scitech 2020 Forum, Driving aerospace solutions for global challenges, Orlando, 06. - 10. January 2020 ER - TY - CHAP A1 - Finger, Felix A1 - de Vries, Reynard A1 - Vos, Roelof A1 - Braun, Carsten A1 - Bil, Cees T1 - A comparison of hybrid-electric aircraft sizing methods T2 - AIAA Scitech 2020 Forum N2 - The number of case studies focusing on hybrid-electric aircraft is steadily increasing, since these configurations are thought to lead to lower operating costs and environmental impact than traditional aircraft. However, due to the lack of reference data of actual hybrid-electric aircraft, in most cases, the design tools and results are difficult to validate. In this paper, two independently developed approaches for hybrid-electric conceptual aircraft design are compared. An existing 19-seat commuter aircraft is selected as the conventional baseline, and both design tools are used to size that aircraft. The aircraft is then re-sized under consideration of hybrid-electric propulsion technology. This is performed for parallel, serial, and fully-electric powertrain architectures. Finally, sensitivity studies are conducted to assess the validity of the basic assumptions and approaches regarding the design of hybrid-electric aircraft. Both methods are found to predict the maximum take-off mass (MTOM) of the reference aircraft with less than 4% error. The MTOM and payload-range energy efficiency of various (hybrid-) electric configurations are predicted with a maximum difference of approximately 2% and 5%, respectively. The results of this study confirm a correct formulation and implementation of the two design methods, and the data obtained can be used by researchers to benchmark and validate their design tools. Y1 - 2020 U6 - https://doi.org/10.2514/6.2020-1006 N1 - AIAA Scitech 2020 Forum, Driving aerospace solutions for global challenges, Orlando, 06. - 10. January 2020 ER - TY - CHAP A1 - Laack, Walter van T1 - Schnittstelle Tod: Aufbruch oder Ende - Kontakte oder Hirngespinste? N2 - Tagungsbeiträge des 6. Europäischen Seminars am 09. November 2019 in Aachen zum Thema Nahtoderfahrungen mit dem Serientitel: "Schnittstelle Tod" Y1 - 2020 SN - 978-3-936624-51-9 N1 - 6. „Jour Fixe“ im Dreiländereck zum Themenkreis „Nahtoderfahrungen (NTE)“: Schnittstelle Tod „Aufbruch oder Ende – Kontakte oder Hirngespinste?“, 9. November 2019, Aachen PB - van Laack GmbH CY - Aachen ER - TY - CHAP A1 - Paulsen, Svea A1 - Hoffstadt, Kevin A1 - Krafft, Simone A1 - Leite, A. A1 - Zang, J. A1 - Fonseca-Zang, W. A1 - Kuperjans, Isabel T1 - Continuous biogas production from sugarcane as sole substrate T2 - Energy Reports N2 - A German–Brazilian research project investigates sugarcane as an energy plant in anaerobic digestion for biogas production. The aim of the project is a continuous, efficient, and stable biogas process with sugarcane as the substrate. Tests are carried out in a fermenter with a volume of 10 l. In order to optimize the space–time load to achieve a stable process, a continuous process in laboratory scale has been devised. The daily feed in quantity and the harvest time of the substrate sugarcane has been varied. Analyses of the digester content were conducted twice per week to monitor the process: The ratio of inorganic carbon content to volatile organic acid content (VFA/TAC), the concentration of short-chain fatty acids, the organic dry matter, the pH value, and the total nitrogen, phosphate, and ammonium concentrations were monitored. In addition, the gas quality (the percentages of CO₂, CH₄, and H₂) and the quantity of the produced gas were analyzed. The investigations have exhibited feasible and economical production of biogas in a continuous process with energy cane as substrate. With a daily feeding rate of 1.68gᵥₛ/l*d the average specific gas formation rate was 0.5 m3/kgᵥₛ. The long-term study demonstrates a surprisingly fast metabolism of short-chain fatty acids. This indicates a stable and less susceptible process compared to other substrates. Y1 - 2020 U6 - https://doi.org/10.1016/j.egyr.2019.08.035 N1 - 6th International Conference on Energy and Environment Research, ICEER 2019, 22–25 July, University of Aveiro, Portugal VL - 6 IS - Supplement 1 SP - 153 EP - 158 PB - Elsevier ER - TY - CHAP A1 - Leise, Philipp A1 - Breuer, Tim A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Development, validation and assessment of a resilient pumping system T2 - Proceedings of the Joint International Resilience Conference, JIRC2020 N2 - The development of resilient technical systems is a challenging task, as the system should adapt automatically to unknown disturbances and component failures. To evaluate different approaches for deriving resilient technical system designs, we developed a modular test rig that is based on a pumping system. On the basis of this example system, we present metrics to quantify resilience and an algorithmic approach to improve resilience. This approach enables the pumping system to automatically react on unknown disturbances and to reduce the impact of component failures. In this case, the system is able to automatically adapt its topology by activating additional valves. This enables the system to still reach a minimum performance, even in case of failures. Furthermore, timedependent disturbances are evaluated continuously, deviations from the original state are automatically detected and anticipated in the future. This allows to reduce the impact of future disturbances and leads to a more resilient system behaviour. KW - water supply system KW - fault detection KW - anticipation strategy Y1 - 2020 SN - 978-90-365-5095-6 N1 - Joint International Resilience Conference 2020. Interconnected: Resilience Innovations for Sustainable Development Goals. 23 - 27 November, 2020, Singapore SP - 97 EP - 100 ER - TY - CHAP A1 - Lorenz, Imke-Sophie A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Resilience enhancement of critical infrastructure – graph-theoretical resilience analysis of the water distribution system in the German city of Darmstadt T2 - 14th WCEAM Proceedings N2 - Water suppliers are faced with the great challenge of achieving high-quality and, at the same time, low-cost water supply. Since climatic and demographic influences will pose further challenges in the future, the resilience enhancement of water distribution systems (WDS), i.e. the enhancement of their capability to withstand and recover from disturbances, has been in particular focus recently. To assess the resilience of WDS, graph-theoretical metrics have been proposed. In this study, a promising approach is first physically derived analytically and then applied to assess the resilience of the WDS for a district in a major German City. The topology based resilience index computed for every consumer node takes into consideration the resistance of the best supply path as well as alternative supply paths. This resistance of a supply path is derived to be the dimensionless pressure loss in the pipes making up the path. The conducted analysis of a present WDS provides insight into the process of actively influencing the resilience of WDS locally and globally by adding pipes. The study shows that especially pipes added close to the reservoirs and main branching points in the WDS result in a high resilience enhancement of the overall WDS. KW - Resilient infrastructure KW - Resilience assessment KW - Resilience metric graph theory KW - Water distribution system KW - Case study Y1 - 2020 SN - 978-3-030-64228-0 SN - 978-3-030-64227-3 U6 - https://doi.org/10.1007/978-3-030-64228-0_13 N1 - 14th WCEAM Proceedings. World Congress on Engineering Asset Management, 28-31 July 2019, Singapore Part of the Lecture Notes in Mechanical Engineering book series (LNME) SP - 137 EP - 149 PB - Springer CY - Cham ER - TY - CHAP A1 - Philipp, Brauner A1 - Brillowski, Florian Sascha A1 - Dammers, Hannah A1 - Königs, Peter A1 - Kordtomeikel, Frauke Carole A1 - Petruck, Henning A1 - Schaar, Anne Kathrin A1 - Schmitz, Seth A1 - Steuer-Dankert, Linda A1 - Mertens, Alexander A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Nagel, Saskia K. A1 - Nitsch, Verena A1 - Schuh, Günther A1 - Ziefle, Martina ED - Mrugalska, Beata ED - Trzcielinski, Stefan ED - Karwowski, Waldemar ED - Nicolantonio, Massimo Di ED - Roossi, Emilio T1 - A research framework for human aspects in the internet of production: an intra-company perspective T2 - Proceedings of the AHFE 2020 N2 - Digitalization in the production sector aims at transferring concepts and methods from the Internet of Things (IoT) to the industry and is, as a result, currently reshaping the production area. Besides technological progress, changes in work processes and organization are relevant for a successful implementation of the “Internet of Production” (IoP). Focusing on the labor organization and organizational procedures emphasizes to consider intra-company factors such as (user) acceptance, ethical issues, and ergonomics in the context of IoP approaches. In the scope of this paper, a research approach is presented that considers these aspects from an intra-company perspective by conducting studies on the shop floor, control level and management level of companies in the production area. Focused on four central dimensions—governance, organization, capabilities, and interfaces—this contribution presents a research framework that is focused on a systematic integration and consideration of human aspects in the realization of the IoP. KW - Human factors KW - Digitalization KW - Acceptance KW - Ethics KW - Human-robot collaboration Y1 - 2020 SN - 978-3-030-51980-3 U6 - https://doi.org/10.1007/978-3-030-51981-0_1 N1 - AHFE 2020 Virtual Conferences on Human Aspects of Advanced Manufacturing, Advanced Production Management and Process Control, and Additive Manufacturing, Modeling Systems and 3D Prototyping, July 16–20, 2020, USA SP - 3 EP - 17 PB - Springer CY - Cham ER - TY - CHAP A1 - Ulmer, Jessica A1 - Wollert, Jörg A1 - Cheng, C. A1 - Dowey, S. T1 - Enterprise Gamification für produzierende mittelständische Unternehmen T2 - Automation 2020 : Shaping Automation for our Future N2 - Die fortschreitende Digitalisierung und Globalisierung fordert von den Unternehmen eine erhöhte Flexibilität und Anpassungsfähigkeit. Um dies zu erreichen, sind qualifizierte und engagierte Mitarbeiter/-innen unabdingbar. Gamification bietet die Möglichkeit, Beschäftigte individuell in ihren Tätigkeiten zu unterstützen und mittels Feedbackmechanismen zu motivieren. In dieser Arbeit wird ein Gamification Konzept bestehend aus einem intelligenten Arbeitsplatz, einer Wissensdatenbank und einer Gamification Plattform vorgestellt, welches an bestehende Produktionsumgebungen adaptiert werden kann. Das Konzept wird am Beispiel der Longboardproduktion in der Industrie 4.0 Modellfabrik der FH Aachen implementiert und evaluiert. Y1 - 2020 SN - 978-3-18-092375-8 U6 - https://doi.org/10.51202/9783181023754-157 N1 - 21. Leitkongress der Mess- und Automatisierungstechnik AUTOMATION 2020, Shaping Automation for our Future, 30. Juni und 01. Juli 2020, SP - 157 EP - 165 PB - VDI-Verlag CY - Düsseldorf ER - TY - CHAP A1 - Schmidts, Oliver A1 - Kraft, Bodo A1 - Winkens, Marvin A1 - Zündorf, Albert T1 - Catalog integration of low-quality product data by attribute label ranking T2 - Proceedings of the 9th International Conference on Data Science, Technology and Applications DATA - Volume 1 N2 - The integration of product data from heterogeneous sources and manufacturers into a single catalog is often still a laborious, manual task. Especially small- and medium-sized enterprises face the challenge of timely integrating the data their business relies on to have an up-to-date product catalog, due to format specifications, low quality of data and the requirement of expert knowledge. Additionally, modern approaches to simplify catalog integration demand experience in machine learning, word vectorization, or semantic similarity that such enterprises do not have. Furthermore, most approaches struggle with low-quality data. We propose Attribute Label Ranking (ALR), an easy to understand and simple to adapt learning approach. ALR leverages a model trained on real-world integration data to identify the best possible schema mapping of previously unknown, proprietary, tabular format into a standardized catalog schema. Our approach predicts multiple labels for every attribute of an inpu t column. The whole column is taken into consideration to rank among these labels. We evaluate ALR regarding the correctness of predictions and compare the results on real-world data to state-of-the-art approaches. Additionally, we report findings during experiments and limitations of our approach. Y1 - 2020 SN - 978-989-758-440-4 U6 - https://doi.org/10.5220/0009831000900101 N1 - 9th International Conference on Data Science, Technologies and Applications (DATA 2020), 7 - 9 July 2020, online SP - 90 EP - 101 PB - SciTePress CY - Setúbal, Portugal ER -