TY - CHAP A1 - Adams, Moritz A1 - Losekamm, Martin J. A1 - Czupalla, Markus T1 - Development of the Thermal Control System for the RadMap Telescope Experiment on the International Space Station T2 - International Conference on Environmental Systems Y1 - 2020 N1 - The proceedings for the 2020 International Conference on Environmental Systems, ICES-2020-179 SP - 1 EP - 10 ER - TY - CHAP A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - Simulation und Verifikation komplexer Handarbeitsprozesse durch die Kombination von Virtual Reality und Augmented Reality im Single-Piece-Workflow T2 - AALE 2020, 17. Fachkonferenz Angewandte Automatisierungstechnik in Lehre und Entwicklung, Automatisierung und Mensch-Technik-Interaktion, Leipzig, DE, 4.-6.3.2020 Y1 - 2020 SN - 978-3-8007-5180-8 SP - 1 EP - 4 ER - TY - CHAP A1 - Ferrein, Alexander A1 - Meeßen, Marcus A1 - Limpert, Nicolas A1 - Schiffer, Stefan ED - Lepuschitz, Wilfried T1 - Compiling ROS Schooling Curricula via Contentual Taxonomies T2 - Robotics in Education Y1 - 2021 SN - 978-3-030-67411-3 U6 - http://dx.doi.org/10.1007/978-3-030-67411-3_5 N1 - RiE: International Conference on Robotics in Education (RiE); Advances in Intelligent Systems and Computing book series (AISC, volume 1316) SP - 49 EP - 60 PB - Springer CY - Cham ER - TY - CHAP A1 - El Moussaoui, Noureddine A1 - Kassmi, Khalil A1 - Alexopoulos, Spiros A1 - Schwarzer, Klemens A1 - Chayeb, Hamid A1 - Bachiri, Najib T1 - Simulation studies on a new innovative design of a hybrid solar distiller MSDH alimented with a thermal and photovoltaic energy T2 - Materialstoday: Proceedings Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.matpr.2021.03.115 SN - 2214-7853 ER - TY - CHAP A1 - Bergmann, Kevin A1 - Gräbener, Josefine A1 - Wild, Dominik A1 - Ulfers, H. A1 - Czupalla, Markus T1 - Study on thermal stabilization of a GEO-stationary telescope baffling system by integral application of phase change material T2 - International Conference on Environmental Systems N2 - The utilization of phase change material (PCM) for latent heat storage and thermal control of spacecraft has been demonstrated in the past in few missions only. One limiting factor was the fact that all concepts developed so far envisioned the PCM to be applied as an additional capacitor, encapsulated in its own housing, leading to mass, efficiency and accommodation challenges. Recently, the application of PCM within the scan cavity of a GEOS type satellite has been suggested, in order to tackle thermal issues due to direct sun intrusion (Choi, M., 2014). However, the application of PCM in such complex mechanical structures is extremely challenging. A new concept to tackle this issue is currently under development at the FH Aachen University of Applied Sciences. The concept "Infused Thermal Solutions (ITS)" is based on the idea to 3D print metallic structures in their regular functional shape, but double walled with internal lattice support structures, allowing the infusion of a PCM layer directly into the voids and eliminating the need for additional parts and interfaces. Together with OHB System, FH Aachen theoretically studied the application of this technology to the Meteosat Third Generation (MTG) Infra-Red Sounder (IRS) instrument. The study focuses on the scan cavity and entrance baffling assembly (EBA) of the IRS. It consists of thermal analyses, 3D-redesign and bread boarding of a scaled and PCM infused EBA version. In the thermal design of the alternative EBA, PCM was applied directly into the EBA, simulating the worst hot case sun intrusion of the mission. By applying 4kg of PCM (to a 60kg baffle) the EBA temperature excursions during sun intrusion were limited from 140K to 30K, leading to a significant thermo-opto-elastic performance gain. This paper introduces the ITS concept development status. Y1 - 2019 N1 - 49th International Conference on Environmental Systems, 7-11 July 2019, Boston, Massachusetts ; ICES-2019-72 SP - 1 EP - 14 ER - TY - CHAP A1 - Schulte, Maximilian A1 - Eggert, Mathias T1 - Predicting hourly bitcoin prices based on long short-term memory neural networks T2 - Proceedings of the International Conference on Wirtschaftsinformatik (WI) 2021 N2 - Bitcoin is a cryptocurrency and is considered a high-risk asset class whose price changes are difficult to predict. Current research focusses on daily price movements with a limited number of predictors. The paper at hand aims at identifying measurable indicators for Bitcoin price movement s and the development of a suitable forecasting model for hourly changes. The paper provides three research contributions. First, a set of significant indicators for predicting the Bitcoin price is identified. Second, the results of a trained Long Short-term Memory (LSTM) neural network that predicts price changes on an hourly basis is presented and compared with other algorithms. Third, the results foster discussions of the applicability of neural nets for stock price predictions. In total, 47 input features for a period of over 10 months could be retrieved to train a neural net that predicts the Bitcoin price movements with an error rate of 3.52 %. Y1 - 2021 N1 - 16th International Conference on Wirtschaftsinformatik, March 2021, Essen, Germany ER - TY - CHAP A1 - Dümmler, Andreas A1 - Oetringer, Kerstin A1 - Göttsche, Joachim T1 - Auslegungstool zur energieeffizienten Kühlung von Gebäuden T2 - DKV-Tagung 2020, AA IV Y1 - 2020 N1 - Deutsche Kälte- und Klimatagung 2020 online SP - 1 EP - 12 ER - TY - CHAP A1 - Oetringer, Kerstin A1 - Dümmler, Andreas A1 - Göttsche, Joachim T1 - Neues Modell zur 1D-Simulation der indirekten Verdunstungskühlung T2 - DKV‐Tagung 2020, AA II.1 Y1 - 2020 N1 - Deutsche Kälte- und Klimatagung 2020 online SP - 1 EP - 13 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Keinz, Jan A1 - Horikawa, Atsushi T1 - 30 years of dry low NOx micromix combustor research for hydrogen-rich fuels: an overview of past and present activities T2 - Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, September 21–25, 2020, Virtual, Online. Vol.: 4B: Combustion, Fuels, and Emissions KW - Micromix KW - Hydrogen KW - Fuel-flexibility KW - NOx KW - Emissions Y1 - 2021 SN - 978-0-7918-8413-3 U6 - http://dx.doi.org/10.1115/GT2020-16328 N1 - Paper No. GT2020-16328, V04BT04A069 PB - American Society of Mechanical Engineers (ASME) ER - TY - CHAP A1 - Ayed, Anis Haj A1 - Striegan, Constantin J. D. A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Kazari, M. A1 - Horikawa, Atsushi A1 - Okada, Kunio T1 - Automated design space exploration of the hydrogen fueled "Micromix" combustor technology N2 - Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested “DLN Micromix” combustion technology offers a great potential to burn hydrogen in gas turbines at very low NOx emissions. Aiming to further develop an existing burner design in terms of increased energy density, a redesign is required in order to stabilise the flames at higher mass flows and to maintain low emission levels. For this purpose, a systematic design exploration has been carried out with the support of CFD and optimisation tools to identify the interactions of geometrical and design parameters on the combustor performance. Aerodynamic effects as well as flame and emission formation are observed and understood time- and cost-efficiently. Correlations between single geometric values, the pressure drop of the burner and NOx production have been identified as a result. This numeric methodology helps to reduce the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field. Y1 - 2017 N1 - Proceedings of the 1st Global Power and Propulsion Forum GPPF 2017, Jan 16-18, 2017, Zurich, Switzerland SP - 1 EP - 8 ER -