TY - CHAP A1 - Thenent, N. E. A1 - Dahmann, Peter T1 - Hydrostatic propeller drive T2 - Proceedings of the conference : 18 - 20 May, 2011 Tampere, Finland / the Twelth Scandinavian International Conference on Fluid Power, SICFP'11. Ed.: Harri Sairiala ... Vol. 1 Y1 - 2011 SN - 978-952-15-2517-9 SP - 217 EP - 227 CY - Tampere ER - TY - BOOK A1 - Esch, Thomas T1 - Verbrennungstechnik : Vorlesungsumdruck. 8. Aufl. Y1 - 2011 PB - Fachhochschule Aachen, Lehr- und Forschungsgebiet Thermodynamik und Verbrennungstechnik CY - Aachen ER - TY - CHAP A1 - Lao, B. A1 - Bührig-Polaczek, A. A1 - Röth, Thilo ED - Wielage, Bernhard T1 - Funktionsintegrierte Leichtbaustrukturen in gussintensiver Metall-Hybridbauweise T2 - Verbundwerkstoffe und Werkstoffverbunde: Tagungsband zum 18. Symposium ; 30.03.2011 bis 01.04.2011, Chemnitz Y1 - 2011 SN - 978-3-00-033801-4 N1 - Schriftenreihe Werkstoffe und werkstofftechnische Anwendungen ; 41 SP - 413 EP - 421 PB - Eigenverlag CY - Chemnitz ER - TY - CHAP A1 - Dachwald, Bernd A1 - Xu, Changsheng A1 - Feldmann, Marco A1 - Plescher, Engelbert T1 - IceMole : Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier T2 - EGU General Assembly 2011 Vienna | Austria | 03 – 08 April 2011 N2 - We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named “IceMole”, is currently developed, built, and tested at the FH Aachen University of Applied Sciences’ Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth). Y1 - 2011 ER - TY - CHAP A1 - Loeb, Horst W. A1 - Schartner, Karl-Heinz A1 - Dachwald, Bernd A1 - Ohndorf, Andreas A1 - Seboldt, Wolfgang T1 - An Interstellar – Heliopause mission using a combination of solar/radioisotope electric propulsion T2 - Presented at the 32nd International Electric Propulsion Conference N2 - There is common agreement within the scientific community that in order to understand our local galactic environment it will be necessary to send a spacecraft into the region beyond the solar wind termination shock. Considering distances of 200 AU for a new mission, one needs a spacecraft travelling at a speed of close to 10 AU/yr in order to keep the mission duration in the range of less than 25 yrs, a transfer time postulated by ESA.Two propulsion options for the mission have been proposed and discussed so far: the solar sail propulsion and the ballistic/radioisotope electric propulsion. As a further alternative, we here investigate a combination of solar-electric propulsion and radioisotope-electric propulsion. The solar-electric propulsion stage consists of six 22 cm diameter “RIT-22”ion thrusters working with a high specific impulse of 7377 s corresponding to a positive grid voltage of 5 kV. Solar power of 53 kW BOM is provided by a light-weight solar array. The REP-stage consists of four space-proven 10 cm diameter “RIT-10” ion thrusters that will be operating one after the other for 9 yrs in total. Four advanced radioisotope generators provide 648 W at BOM. The scientific instrument package is oriented at earlier studies. For its mass and electric power requirement 35 kg and 35 W are assessed, respectively. Optimized trajectory calculations, treated in a separate contribution, are based on our “InTrance” method.The program yields a burn out of the REP stage in a distance of 79.6 AU for a usage of 154 kg of Xe propellant. With a C3 = 45,1 (km/s)2 a heliocentric probe velocity of 10 AU/yr is reached at this distance, provided a close Jupiter gravity assist adds a velocity increment of 2.7 AU/yr. A transfer time of 23.8 yrs results for this scenario requiring about 450 kg Xe for the SEP stage, jettisoned at 3 AU. We interpret the SEP/REP propulsion as a competing alternative to solar sail and ballistic/REP propulsion. Omiting a Jupiter fly-by even allows more launch flexibility, leaving the mission duration in the range of the ESA specification. Y1 - 2011 N1 - 32nd International Electric Propulsion Conference, 11-15 September. Wiesbaden, Germany SP - 1 EP - 7 ER - TY - CHAP A1 - Ohndorf, Andreas A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Schartner, Karl-Heinz T1 - Flight times to the heliopause using a combination of solar and radioisotope electric propulsion T2 - 32nd International Electric Propulsion Conference N2 - We investigate the interplanetary flight of a low-thrust space probe to the heliopause,located at a distance of about 200 AU from the Sun. Our goal was to reach this distance within the 25 years postulated by ESA for such a mission (which is less ambitious than the 15-year goal set by NASA). Contrary to solar sail concepts and combinations of allistic and electrically propelled flight legs, we have investigated whether the set flight time limit could also be kept with a combination of solar-electric propulsion and a second, RTG-powered upper stage. The used ion engine type was the RIT-22 for the first stage and the RIT-10 for the second stage. Trajectory optimization was carried out with the low-thrust optimization program InTrance, which implements the method of Evolutionary Neurocontrol,using Artificial Neural Networks for spacecraft steering and Evolutionary Algorithms to optimize the Neural Networks’ parameter set. Based on a parameter space study, in which the number of thrust units, the unit’s specific impulse, and the relative size of the solar power generator were varied, we have chosen one configuration as reference. The transfer time of this reference configuration was 29.6 years and the fastest one, which is technically more challenging, still required 28.3 years. As all flight times of this parameter study were longer than 25 years, we further shortened the transfer time by applying a launcher-provided hyperbolic excess energy up to 49 km2/s2. The resulting minimal flight time for the reference configuration was then 27.8 years. The following, more precise optimization to a launch with the European Ariane 5 ECA rocket reduced the transfer time to 27.5 years. This is the fastest mission design of our study that is flexible enough to allow a launch every year. The inclusion of a fly-by at Jupiter finally resulted in a flight time of 23.8 years,which is below the set transfer-time limit. However, compared to the 27.5-year transfer,this mission design has a significantly reduced launch window and mission flexibility if the escape direction is restricted to the heliosphere’s “nose". KW - low-thrust trajectory optimization KW - heliosphere KW - ion propulsion Y1 - 2011 N1 - IEPC-2011-051 32nd International Electric Propulsion Conference,September 11–15, 2011 Wiesbaden, Germany SP - 1 EP - 12 ER - TY - BOOK A1 - Schmitz, Günter T1 - Elektronik im Kraftfahrzeug : Innovationen bei System und Komponenten ; mit 7 Tabellen / Hrsg.: Schmitz, Günter Y1 - 2012 SN - 978-3-8169-3110-2 N1 - Haus der Technik ; Bd. 123 PB - expert-Verl. CY - Renningen ER - TY - GEN A1 - Baumgartner, Thomas A1 - Wunderlich, Florian A1 - Jaunich, Arthur A1 - Sato, Tomoo A1 - Bundy, Georg A1 - Grießmann, Nadine A1 - Kowalski, Julia A1 - Burghardt, Stefan A1 - Hanebrink, Jörg T1 - Lighting the way: Perspectives on the global lighting market Y1 - 2012 CY - McKinsey ET - 2nd ed. ER - TY - JOUR A1 - Olaru, Alexandra Maria A1 - Kowalski, Julia A1 - Sethi, Vaishali A1 - Blümich, Bernhard T1 - Exchange relaxometry of flow at small Péclet numbers in a glass bead pack JF - Journal of Magnetic Resonance (JMR) N2 - In this paper we consider low Péclet number flow in bead packs. A series of relaxation exchange experiments has been conducted and evaluated by ILT analysis. In the resulting correlation maps, we observed a collapse of the signal and a translation towards smaller relaxation times with increasing flow rates, as well as a signal tilt with respect to the diagonal. In the discussion of the phenomena we present a mathematical theory for relaxation exchange experiments that considers both diffusive and advective transport. We perform simulations based on this theory and discuss them with respect to the conducted experiments. KW - NMR exchange relaxometry KW - Low-field NMR Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.jmr.2012.04.015 SN - 1096-0856 VL - 220 SP - 32 EP - 44 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Fischer, Jan-Thomas A1 - Kowalski, Julia A1 - Pudasaini, Shiva P. T1 - Topographic curvature effects in applied avalanche modelling JF - Cold Regions Science and Technology N2 - This paper describes the implementation of topographic curvature effects within the RApid Mass MovementS (RAMMS) snow avalanche simulation toolbox. RAMMS is based on a model similar to shallow water equations with a Coulomb friction relation and the velocity dependent Voellmy drag. It is used for snow avalanche risk assessment in Switzerland. The snow avalanche simulation relies on back calculation of observed avalanches. The calibration of the friction parameters depends on characteristics of the avalanche track. The topographic curvature terms are not yet included in the above mentioned classical model. Here, we fundamentally improve this model by mathematically and physically including the topographic curvature effects. By decomposing the velocity dependent friction into a topography dependent term that accounts for a curvature enhancement in the Coulomb friction, and a topography independent contribution similar to the classical Voellmy drag, we construct a general curvature dependent frictional resistance, and thus propose new extended model equations. With three site-specific examples, we compare the apparent frictional resistance of the new approach, which includes topographic curvature effects, to the classical one. Our simulation results demonstrate substantial effects of the curvature on the flow dynamics e.g., the dynamic pressure distribution along the slope. The comparison of resistance coefficients between the two models demonstrates that the physically based extension presents an improvement to the classical approach. Furthermore a practical example highlights its influence on the pressure outline in the run out zone of the avalanche. Snow avalanche dynamics modeling natural terrain curvature centrifugal force friction coefficients. KW - Snow KW - Avalanche Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.coldregions.2012.01.005 SN - 1872-7441 VL - 74-75 SP - 21 EP - 30 PB - Elsevier CY - Amsterdam ER -