TY - CHAP A1 - Schöning, Michael Josef A1 - Poghossian, Arshak T1 - Enzyme und Biosensorik T2 - Einführung in die Enzymtechnologie N2 - Enzymbasierte Biosensoren finden seit mehr als fünf Jahrzehnten einen prosperierenden Wachstumsmarkt und werden zunehmend auch in biotechnologischen Prozessen eingesetzt. In diesem Kapitel werden, ausgehend vom Sensorbegriff und typischen Kenngrößen für Biosensoren (Abschn. 18.1), elektrochemische Enzym-Biosensoren vorgestellt und deren typischen Einsatzgebiete diskutiert (Abschn. 18.2). Ein Blick über den „Tellerrand“ hinaus zeigt alternative Transduktorprinzipien (Abschn. 18.3) und führt abschließend in aktuelle Forschungstrends ein (Abschn. 18.4). Y1 - 2018 SN - 978-3-662-57619-9 U6 - https://doi.org/10.1007/978-3-662-57619-9_18 SP - 323 EP - 347 PB - Springer Spektrum CY - Berlin ER - TY - CHAP A1 - Yoshinobu, Tatsuo A1 - Krause, Steffi A1 - Miyamoto, Ko-ichiro A1 - Werner, Frederik A1 - Poghossian, Arshak A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - (Bio-)chemical Sensing and Imaging by LAPS and SPIM T2 - Label-free biosensing: advanced materials, devices and applications N2 - The light-addressable potentiometric sensor (LAPS) and scanning photo-induced impedance microscopy (SPIM) are two closely related methods to visualise the distributions of chemical species and impedance, respectively, at the interface between the sensing surface and the sample solution. They both have the same field-effect structure based on a semiconductor, which allows spatially resolved and label-free measurement of chemical species and impedance in the form of a photocurrent signal generated by a scanning light beam. In this article, the principles and various operation modes of LAPS and SPIM, functionalisation of the sensing surface for measuring various species, LAPS-based chemical imaging and high-resolution sensors based on silicon-on-sapphire substrates are described and discussed, focusing on their technical details and prospective applications. KW - Chemical imaging KW - Field-effect device KW - Light-addressable potentiometric sensor KW - Potentiometry Y1 - 2018 SN - 978-3-319-75219-8 SP - 103 EP - 132 PB - Springer CY - Cham ER - TY - JOUR A1 - Molinnus, Denise A1 - Hardt, G. A1 - Käver, L. A1 - Willenberg, H.S. A1 - Kröger, J.-C. A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Chip-based biosensor for the detection of low adrenaline concentrations to support adrenal venous sampling JF - Sensor and Actuators B: Chemical N2 - A chip-based amperometric biosensor referring on using the bioelectrocatalytical amplification principle for the detection of low adrenaline concentrations is presented. The adrenaline biosensor has been prepared by modification of a platinum thin-film electrode with an enzyme membrane containing the pyrroloquinoline quinone-dependent glucose dehydrogenase and glutaraldehyde. Measuring conditions such as temperature, pH value, and glucose concentration have been optimized to achieve a high sensitivity and a low detection limit of about 1 nM adrenaline measured in phosphate buffer at neutral pH value. The response of the biosensor to different catecholamines has also been proven. Long-term stability of the adrenaline biosensor has been studied over 10 days. In addition, the biosensor has been successfully applied for adrenaline detection in human blood plasma for future biomedical applications. Furthermore, preliminary experiments have been carried to detect the adrenaline-concentration difference measured in peripheral blood and adrenal venous blood, representing the adrenal vein sampling procedure of a physician. Y1 - 2018 U6 - https://doi.org/10.1016/j.snb.2018.05.136 SN - 0925-4005 VL - 272 SP - 21 EP - 27 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Koch, Claudia A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Wege, Christian T1 - Penicillin Detection by Tobacco Mosaic Virus-Assisted Colorimetric Biosensors JF - Nanotheranostics N2 - The presentation of enzymes on viral scaffolds has beneficial effects such as an increased enzyme loading and a prolonged reusability in comparison to conventional immobilization platforms. Here, we used modified tobacco mosaic virus (TMV) nanorods as enzyme carriers in penicillin G detection for the first time. Penicillinase enzymes were conjugated with streptavidin and coupled to TMV rods by use of a bifunctional biotin-linker. Penicillinase-decorated TMV particles were characterized extensively in halochromic dye-based biosensing. Acidometric analyte detection was performed with bromcresol purple as pH indicator and spectrophotometry. The TMV-assisted sensors exhibited increased enzyme loading and strongly improved reusability, and higher analysis rates compared to layouts without viral adapters. They extended the half-life of the sensors from 4 - 6 days to 5 weeks and thus allowed an at least 8-fold longer use of the sensors. Using a commercial budget-priced penicillinase preparation, a detection limit of 100 µM penicillin was obtained. Initial experiments also indicate that the system may be transferred to label-free detection layouts. Y1 - 2018 U6 - https://doi.org/10.7150/ntno.22114 SN - 2206-7418 VL - 2 IS - 2 SP - 184 EP - 196 PB - Ivyspring CY - Sydney ER - TY - CHAP A1 - Koch, Claudia A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Schöning, Michael Josef ED - Wege, Christina T1 - TMV-Based Adapter Templates for Enhanced Enzyme Loading in Biosensor Applications T2 - Virus-Derived Nanoparticles for Advanced Technologies N2 - Nanotubular tobacco mosaic virus (TMV) particles and RNA-free lower-order coat protein (CP) aggregates have been employed as enzyme carriers in different diagnostic layouts and compared for their influence on biosensor performance. In the following, we describe a label-free electrochemical biosensor for improved glucose detection by use of TMV adapters and the enzyme glucose oxidase (GOD). A specific and efficient immobilization of streptavidin-conjugated GOD ([SA]-GOD) complexes on biotinylated TMV nanotubes or CP aggregates was achieved via bioaffinity binding. Glucose sensors with adsorptively immobilized [SA]-GOD, and with [SA]-GOD cross-linked with glutardialdehyde, respectively, were tested in parallel on the same sensor chip. Comparison of these sensors revealed that TMV adapters enhanced the amperometric glucose detection remarkably, conveying highest sensitivity, an extended linear detection range and fastest response times. These results underline a great potential of an integration of virus/biomolecule hybrids with electronic transducers for applications in biosensorics and biochips. Here, we describe the fabrication and use of amperometric sensor chips combining an array of circular Pt electrodes, their loading with GOD-modified TMV nanotubes (and other GOD immobilization methods), and the subsequent investigations of the sensor performance. KW - Tobacco mosaic virus (TMV) KW - Coat protein KW - Enzyme nanocarrier KW - Glucose biosensor KW - Glucose oxidase Y1 - 2018 SN - 978-1-4939-7808-3 U6 - https://doi.org/10.1007/978-1-4939-7808-3 N1 - Methods in Molecular Biology, vol 1776 SP - 553 EP - 568 PB - Humana Press CY - New York, NY ER - TY - BOOK A1 - Schöning, Michael Josef A1 - Poghossian, Arshak T1 - Label-free biosensing: advanced materials, devices and applications Y1 - 2018 SN - 978-3-319-75219-8 PB - Springer CY - Cham ER - TY - JOUR A1 - Bronder, Thomas A1 - Jessing, Max P. A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Detection of PCR-Amplified Tuberculosis DNA Fragments with Polyelectrolyte-Modified Field-Effect Sensors JF - Analytical Chemistry N2 - Field-effect-based electrolyte-insulator-semiconductor (EIS) sensors were modified with a bilayer of positively charged weak polyelectrolyte (poly(allylamine hydrochloride) (PAH)) and probe single-stranded DNA (ssDNA) and are used for the detection of complementary single-stranded target DNA (cDNA) in different test solutions. The sensing mechanism is based on the detection of the intrinsic molecular charge of target cDNA molecules after the hybridization event between cDNA and immobilized probe ssDNA. The test solutions contain synthetic cDNA oligonucleotides (with a sequence of tuberculosis mycobacteria genome) or PCR-amplified DNA (which origins from a template DNA strand that has been extracted from Mycobacterium avium paratuberculosis-spiked human sputum samples), respectively. Sensor responses up to 41 mV have been measured for the test solutions with DNA, while only small signals of ∼5 mV were detected for solutions without DNA. The lower detection limit of the EIS sensors was ∼0.3 nM, and the sensitivity was ∼7.2 mV/decade. Fluorescence experiments using SybrGreen I fluorescence dye support the electrochemical results. Y1 - 2018 U6 - https://doi.org/10.1021/acs.analchem.8b01807 SN - 0003-2700 VL - 90 IS - 12 SP - 7747 EP - 7753 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Oberländer, Jan A1 - Kirchner, Patrick A1 - Keusgen, Michael A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - Experimental and Numerical Analyzes of a Sensor Based on Interdigitated Electrodes for Studying Microbiological Alterations JF - physica status solidi (a): applications and materials science N2 - In this work, a cell-based biosensor to evaluate the sterilization efficacy of hydrogen peroxide vapor sterilization processes is characterized. The transducer of the biosensor is based on interdigitated gold electrodes fabricated on an inert glass substrate. Impedance spectroscopy is applied to evaluate the sensor behavior and the alteration of test microorganisms due to the sterilization process. These alterations are related to changes in relative permittivity and electrical conductivity of the bacterial spores. Sensor measurements are conducted with and without bacterial spores (Bacillus atrophaeus), as well as after an industrial sterilization protocol. Equivalent two-dimensional numerical models based on finite element method of the periodic finger structures of the interdigitated gold electrodes are designed and validated using COMSOL® Multiphysics software by the application of known dielectric properties. The validated models are used to compute the electrical properties at different sensor states (blank, loaded with spores, and after sterilization). As a final result, we will derive and tabulate the frequency-dependent electrical parameters of the spore layer using a novel model that combines experimental data with numerical optimization techniques. Y1 - 2018 U6 - https://doi.org/10.1002/pssa.201700920 SN - 1862-6319 VL - 215 IS - 15 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Rabehi, Amine A1 - Garlan, Benjamin A1 - Achtsnicht, Stefan A1 - Krause, Hans-Joachim A1 - Offenhäusser, Andreas A1 - Ngo, Kieu A1 - Neveu, Sophie A1 - Graff-Dubois, Stephanie A1 - Kokabi, Hamid T1 - Magnetic detection structure for Lab-on-Chip applications based on the frequency mixing technique JF - Sensors N2 - A magnetic frequency mixing technique with a set of miniaturized planar coils was investigated for use with a completely integrated Lab-on-Chip (LoC) pathogen sensing system. The system allows the detection and quantification of superparamagnetic beads. Additionally, in terms of magnetic nanoparticle characterization ability, the system can be used for immunoassays using the beads as markers. Analytical calculations and simulations for both excitation and pick-up coils are presented; the goal was to investigate the miniaturization of simple and cost-effective planar spiral coils. Following these calculations, a Printed Circuit Board (PCB) prototype was designed, manufactured, and tested for limit of detection, linear response, and validation of theoretical concepts. Using the magnetic frequency mixing technique, a limit of detection of 15 µg/mL of 20 nm core-sized nanoparticles was achieved without any shielding. KW - Lab-on-Chip KW - magnetic sensing KW - frequency mixing KW - superparamagnetic nanoparticles KW - magnetic beads Y1 - 2018 U6 - https://doi.org/10.3390/s18061747 SN - 1424-8220 VL - 18 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Poghossian, Arshak A1 - Jablonski, Melanie A1 - Koch, Claudia A1 - Bronder, Thomas A1 - Rolka, David A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Field-effect biosensor using virus particles as scaffolds for enzyme immobilization JF - Biosensors and Bioelectronics N2 - A field-effect biosensor employing tobacco mosaic virus (TMV) particles as scaffolds for enzyme immobilization is presented. Nanotubular TMV scaffolds allow a dense immobilization of precisely positioned enzymes with retained activity. To demonstrate feasibility of this new strategy, a penicillin sensor has been developed by coupling a penicillinase with virus particles as a model system. The developed field-effect penicillin biosensor consists of an Al-p-Si-SiO₂-Ta₂O₅-TMV structure and has been electrochemically characterized in buffer solutions containing different concentrations of penicillin G. In addition, the morphology of the biosensor surface with virus particles was characterized by scanning electron microscopy and atomic force microscopy methods. The sensors possessed a high penicillin sensitivity of ~ 92 mV/dec in a nearly-linear range from 0.1 mM to 10 mM, and a low detection limit of about 50 µM. The long-term stability of the penicillin biosensor was periodically tested over a time period of about one year without any significant loss of sensitivity. The biosensor has also been successfully applied for penicillin detection in bovine milk samples. Y1 - 2018 U6 - https://doi.org/10.1016/j.bios.2018.03.036 SN - 0956-5663 VL - 110 SP - 168 EP - 174 PB - Elsevier CY - Amsterdam ER -