TY - JOUR A1 - Itabashi, Akinori A1 - Kosaka, Naoki A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - High-speed chemical imaging system based on front-side-illuminated LAPS JF - Sensors and actuators B: Chemical N2 - The chemical imaging sensor is a semiconductor-based chemical sensor that can visualize the spatial distribution of specific ions on the sensing surface. The conventional chemical imaging system based on the light-addressable potentiometric sensor (LAPS), however, required a long time to obtain a chemical image, due to the slow mechanical scan of a single light beam. For high-speed imaging, a plurality of light beams modulated at different frequencies can be employed to measure the ion concentrations simultaneously at different locations on the sensor plate by frequency division multiplex (FDM). However, the conventional measurement geometry of back-side illumination limited the bandwidth of the modulation frequency required for FDM measurement, because of the low-pass filtering characteristics of carrier diffusion in the Si substrate. In this study, a high-speed chemical imaging system based on front-side-illuminated LAPS was developed, which achieved high-speed spatiotemporal recording of pH change at a rate of 70 frames per second. Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.snb.2013.03.016 SN - 1873-3077 VL - 182 SP - 315 EP - 321 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Frequency behaviour of light-addressable potentiometric sensors JF - Physica Status Solidi (A) N2 - Light-addressable potentiometric sensors (LAPS) are semiconductor-based potentiometric sensors, with the advantage to detect the concentration of a chemical species in a liquid solution above the sensor surface in a spatially resolved manner. The addressing is achieved by a modulated and focused light source illuminating the semiconductor and generating a concentration-depending photocurrent. This work introduces a LAPS set-up that is able to monitor the electrical impedance in addition to the photocurrent. The impedance spectra of a LAPS structure, with and without illumination, as well as the frequency behaviour of the LAPS measurement are investigated. The measurements are supported by electrical equivalent circuits to explain the impedance and the LAPS-frequency behaviour. The work investigates the influence of different parameters on the frequency behaviour of the LAPS. Furthermore, the phase shift of the photocurrent, the influence of the surface potential as well as the changes of the sensor impedance will be discussed. Y1 - 2013 U6 - http://dx.doi.org/10.1002/pssa.201200929 SN - 1521-396X ; 0031-8965 VL - 210 IS - 5 SP - 884 EP - 891 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Ichimura, Hiroki A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Chemical imaging of the concentration profile of ion diffusion in a microfluidic channel JF - Sensors and actuators. B: Chemical N2 - The chemical imaging sensor is a device to visualize the spatial distribution of chemical species based on the principle of LAPS (light-addressable potentiometric sensor), which is a field-effect chemical sensor based on semiconductor. In this study, the chemical imaging sensor has been applied to investigate the ion profile of laminar flows in a microfluidic channel. The chemical images (pH maps) were collected in a Y-shaped microfluidic channel while injecting HCl and NaCl solutions into two branches. From the chemical images, it was clearly observed that the injected solutions formed laminar flows in the channel. In addition, ion diffusion across the laminar flows was observed, and the diffusion coefficient could be derived by fitting the pH profiles to the Fick's equation. Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.snb.2013.04.057 SN - 1873-3077 (E-Journal); 0925-4005 (Print) N1 - Part of special issue "Selected Papers from the 26th European Conference on Solid-State Transducers" VL - 189 SP - 240 EP - 245 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kuhnert, Marie-Therese A1 - Bialonski, Stephan A1 - Noenning, Nina A1 - Mai, Heinke A1 - Hinrichs, Hermann A1 - Helmstaedter, Christoph A1 - Lehnertz, Klaus T1 - Incidental and intentional learning of verbal episodic material differentially modifies functional brain networks JF - Plos one N2 - Learning- and memory-related processes are thought to result from dynamic interactions in large-scale brain networks that include lateral and mesial structures of the temporal lobes. We investigate the impact of incidental and intentional learning of verbal episodic material on functional brain networks that we derive from scalp-EEG recorded continuously from 33 subjects during a neuropsychological test schedule. Analyzing the networks' global statistical properties we observe that intentional but not incidental learning leads to a significantly increased clustering coefficient, and the average shortest path length remains unaffected. Moreover, network modifications correlate with subsequent recall performance: the more pronounced the modifications of the clustering coefficient, the higher the recall performance. Our findings provide novel insights into the relationship between topological aspects of functional brain networks and higher cognitive functions. Y1 - 2013 U6 - http://dx.doi.org/10.1371/journal.pone.0080273 VL - 8 IS - 11 PB - PLOS CY - San Francisco ER - TY - CHAP A1 - Schöning, Michael Josef A1 - Abdelghani, Adnane T1 - Nanoscale Science and Technology (NS&T’12) : Proceedings Book Humboldt Kolleg <2012, Tunisia> ; Tunisia, 17-19 March, 2012 / ed. by Michael J. Schöning ; Adnane Abdelghani N2 - Proceedings of the 2nd Humboldt Kolleg, Hammamet, Tunisia Organizer: Alexander von Humboldt Stiftung, Germany. pdf 184 p. Welcome Address Dear Participants, Welcome to the 2nd Humboldt Kolleg in “Nanoscale Science and Technology” (NS&T’12) in Tunisia, sponsored by the "Alexander von Humboldt" foundation. The NS&T’12 multidisciplinary scientific program includes seven "hot" topics dealing with "Nanoscale Science and Technology" covering basic and application-oriented research as well as industrial (market) aspects: - Molecular Biophyics, Spectroscopy Techniques, Imaging Microscopy - Nanomaterials Synthesis for Medicine and Bio-chemical Sensors - Nanostructures, Semiconductors, Photonics and Nanodevices - New Technologies in Market Industry - Environment, Electro-chemistry, Bio-polymers and Fuel Cells - Nanomaterials, Photovoltaic, Modelling, Quantum Physics - Microelectronics, Sensors Networks and Embedded Systems We are deeply indebted to all members of the Scientific Committee and General Chairs for joint Sessions and to all speakers and chairmen, who have dedicated invaluable time and efforts for the realization of this event. On behalf of the Organizing Committee, we are cordially inviting you to join the conference and hope that your stay will be fruitful, rewarding and enjoyable. Prof. Dr. Michael J. Schöning, Prof. Dr. Adnane Abdelghani KW - Biosensor KW - Nanotechnologie KW - Nanomaterial KW - Nano Materials KW - Bio-Sensors Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-3544 ER - TY - JOUR A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Miyamoto, Ko-ichiro A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - High speed and high resolution chemical imaging based on a new type of OLED-LAPS set-up JF - Sensors and Actuators B: Chemical N2 - Light-addressable potentiometric sensors (LAPS) are field-effect-based sensors. A modulated light source is used to define the particular measurement spot to perform spatially resolved measurements of chemical species and to generate chemical images. In this work, an organic-LED (OLED) display has been chosen as a light source. This allows high measurement resolution and miniaturisation of the system. A new developed driving method for the OLED display optimised for LAPS-based measurements is demonstrated. The new method enables to define modulation frequencies between 1 kHz and 16 kHz and hence, reduces the measurement time of a chemical image by a factor of 40 compared to the traditional addressing of an OLED display. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.snb.2011.12.102 SN - 0925-4005 N1 - Part of special issue "Selected Papers presented at Eurosensors XXV" VL - 175 SP - 118 EP - 122 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Stadler, Andreas M. A1 - Garvey, G. J. A1 - Bocahut, A. A1 - Sacquin-Mora, S. A1 - Digel, Ilya A1 - Schneider, G. J. A1 - Natali, F. A1 - Artmann, Gerhard A1 - Zaccai, G. T1 - Thermal fluctuations of haemoglobin from different species : adaptation to temperature via conformational dynamics JF - Journal of the Royal Society Interface N2 - Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 Å at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits. Y1 - 2012 U6 - http://dx.doi.org/10.1098/rsif.2012.0364 SN - 1742-5689 VL - 9 IS - 76 SP - 2845 EP - 2855 PB - The Royal Society CY - London ER - TY - JOUR A1 - Wagner, Torsten A1 - Werner, Frederik A1 - Miyamoto, Ko-Ichiro A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Development and characterisation of a compact light-addressable potentiometric sensor (LAPS) based on the digital light processing (DLP) technology for flexible chemical imaging JF - Sensors and Actuators B: Chemical N2 - Chemical imaging systems allow the visualisation of the distribution of chemical species on the sensor surface. This work represents a new flexible approach to read out light-addressable potentiometric sensors (LAPS) with the help of a digital light processing (DLP) set-up. The DLP, known well for video projectors, consists of a mirror-array MEMS device, which allows fast and flexible generation of light patterns. With the help of these light patterns, the sensor surface of the LAPS device can be addressed. The DLP approach has several advantages compared to conventional LAPS set-ups, e.g., the spot size and the shape of the light pointer can be changed easily and no mechanical movement is necessary, which reduces the size of the set-up and increases the stability and speed of the measurement. In addition, the modulation frequency and intensity of the light beam are important parameters of the LAPS set-up. Within this work, the authors will discuss two different ways of light modulation by the DLP set-up, investigate the influence of different modulation frequencies and different light intensities as well as demonstrate the scanning capabilities of the new set-up by pH mapping on the sensor surface. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.snb.2010.12.003 SN - 0925-4005 N1 - Part of special issue "Eurosensors XXIV, 2010" VL - 170 SP - 34 EP - 39 PB - Elsevier CY - Amsterdam ER - TY - BOOK A1 - Digel, Ilya A1 - Zhubanova, Azhar Ahmetovna A1 - Akimbekov, Nuraly Shardarbekovich T1 - Visual Virology Y1 - 2012 SN - 978-601-247-298-1 N1 - Text kasachisch, russisch, englisch CY - Almaty ER - TY - JOUR A1 - Staat, Manfred A1 - Vu, Duc Khoi T1 - Limit analysis of flaws in pressurized pipes and cylindrical vessels Part II: Circumferential defects JF - Engineering Fracture Mechanics ; 97(2013), H. 1 N2 - Upper and lower bound theorems of limit analyses have been presented in part I of the paper. Part II starts with the finite element discretization of these theorems and demonstrates how both can be combined in a primal–dual optimization problem. This recently proposed numerical method is used to guide the development of a new class of closed-form limit loads for circumferential defects, which show that only large defects contribute to plastic collapse with a rapid loss of strength with increasing crack sizes. The formulae are compared with primal–dual FEM limit analyses and with burst tests. Even closer predictions are obtained with iterative limit load solutions for the von Mises yield function and for the Tresca yield function. Pressure loading of the faces of interior cracks in thick pipes reduces the collapse load of circumferential defects more than for axial flaws. Axial defects have been treated in part I of the paper. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.engfracmech.2012.05.017 SN - 0013-7944 VL - 97 SP - 314 EP - 333 PB - Elsevier CY - Amsterdam ER -