TY - JOUR A1 - Ulmer, Jessica A1 - Braun, Sebastian A1 - Cheng, Chi-Tsun A1 - Dowey, Steve A1 - Wollert, Jörg T1 - A human factors-aware assistance system in manufacturing based on gamification and hardware modularisation JF - International Journal of Production Research N2 - Assistance systems have been widely adopted in the manufacturing sector to facilitate various processes and tasks in production environments. However, existing systems are mostly equipped with rigid functional logic and do not provide individual user experiences or adapt to their capabilities. This work integrates human factors in assistance systems by adjusting the hardware and instruction presented to the workers’ cognitive and physical demands. A modular system architecture is designed accordingly, which allows a flexible component exchange according to the user and the work task. Gamification, the use of game elements in non-gaming contexts, has been further adopted in this work to provide level-based instructions and personalised feedback. The developed framework is validated by applying it to a manual workstation for industrial assembly routines. KW - Human factors KW - assistance system KW - gamification KW - adaptive systems KW - manufacturing Y1 - 2023 U6 - https://doi.org/10.1080/00207543.2023.2166140 SN - 0020-7543 (Print) SN - 1366-588X (Online) PB - Taylor & Francis ER - TY - JOUR A1 - Bergmann, Ole A1 - Möhren, Felix A1 - Braun, Carsten A1 - Janser, Frank T1 - On the influence of elasticity on swept propeller noise JF - AIAA SCITECH 2023 Forum N2 - High aerodynamic efficiency requires propellers with high aspect ratios, while propeller sweep potentially reduces noise. Propeller sweep and high aspect ratios increase elasticity and coupling of structural mechanics and aerodynamics, affecting the propeller performance and noise. Therefore, this paper analyzes the influence of elasticity on forward-swept, backward-swept, and unswept propellers in hover conditions. A reduced-order blade element momentum approach is coupled with a one-dimensional Timoshenko beam theory and Farassat's formulation 1A. The results of the aeroelastic simulation are used as input for the aeroacoustic calculation. The analysis shows that elasticity influences noise radiation because thickness and loading noise respond differently to deformations. In the case of the backward-swept propeller, the location of the maximum sound pressure level shifts forward by 0.5 °, while in the case of the forward-swept propeller, it shifts backward by 0.5 °. Therefore, aeroacoustic optimization requires the consideration of propeller deformation. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-0210 N1 - Session: Propeller, Open Rotor, and Rotorcraft Noise II AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, MD & Online PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Böhnisch, Nils A1 - Braun, Carsten A1 - Muscarello, Vincenzo A1 - Marzocca, Pier T1 - A sensitivity study on aeroelastic instabilities of slender wings with a large propeller JF - AIAA SCITECH 2023 Forum N2 - Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan. These highly flexible dynamic systems can exhibit uncommon aeroelastic instabilities, which should be carefully investigated to ensure safe operation. The interaction between the propeller and the wing is of particular importance. It is known that whirl flutter is stabilized by wing motion and wing aerodynamics. This paper investigates the effect of a propeller onto wing flutter as a function of span position and mounting stiffness between the propeller and wing. The analysis of a comparison between a tractor and pusher configuration has shown that the coupled system is more stable than the standalone wing for propeller positions near the wing tip for both configurations. The wing fluttermechanism is mostly affected by the mass of the propeller and the resulting change in eigenfrequencies of the wing. For very weak mounting stiffnesses, whirl flutter occurs, which was shown to be stabilized compared to a standalone propeller due to wing motion. On the other hand, the pusher configuration is, as to be expected, the more critical configuration due to the attached mass behind the elastic axis. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-1893 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, MD & Online SP - 1 EP - 14 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Funke, Harald A1 - Beckmann, Nils T1 - Flexible fuel operation of a Dry-Low-NOx Micromix Combustor with Variable Hydrogen Methane Mixture JF - International Journal of Gas Turbine, Propulsion and Power Systems N2 - The role of hydrogen (H2) as a carbon-free energy carrier is discussed since decades for reducing greenhouse gas emissions. As bridge technology towards a hydrogen-based energy supply, fuel mixtures of natural gas or methane (CH4) and hydrogen are possible. The paper presents the first test results of a low-emission Micromix combustor designed for flexible-fuel operation with variable H2/CH4 mixtures. The numerical and experimental approach for considering variable fuel mixtures instead of recently investigated pure hydrogen is described. In the experimental studies, a first generation FuelFlex Micromix combustor geometry is tested at atmospheric pressure at gas turbine operating conditions corresponding to part- and full-load. The H2/CH4 fuel mixture composition is varied between 57 and 100 vol.% hydrogen content. Despite the challenges flexible-fuel operation poses onto the design of a combustion system, the evaluated FuelFlex Micromix prototype shows a significant low NOx performance Y1 - 2022 SN - 1882-5079 VL - 13 IS - 2 SP - 1 EP - 7 ER - TY - JOUR A1 - Maurischat, Andreas T1 - Algebraic independence of the Carlitz period and its hyperderivatives JF - Journal of Number Theory KW - Drinfeld modules KW - Periods KW - t-modules KW - Transcendence KW - Higher derivations Y1 - 2022 U6 - https://doi.org/10.1016/j.jnt.2022.01.006 SN - 0022-314X VL - 240 SP - 145 EP - 162 PB - Elsevier CY - Orlando, Fla. ER - TY - CHAP A1 - Bauschat, J.-Michael A1 - Benner, Miriam A1 - Klinge, Henner A1 - Ziegler, Simon T1 - Urbane Mobilität entdeckt die 3. Dimension T2 - Transforming Mobility – What Next? N2 - Der Themenkomplex urbane Mobilität ist getrieben durch den Verkehrsinfarkt in Ballungszentren, durch Luftverschmutzung und Lärm, sowie den Trend zum Leben in der Stadt in den städteplanerischen Fokus gerückt. Emissionsneutrale Antriebskonzepte in der Luftfahrt führen zu Ansätzen Fluggeräte einzusetzen, die batteriegetrieben vertikal aufsteigen und landen können. Flugphysikalisch und energetisch ist diese Technik nur dann sinnvoll, wenn es zwingende Gründe gibt (z.B. Rettungseinsätze), daher wird der flugphysikalische Hintergrund prinzipiell erläutert. Es werden einige aktuelle Lufttransportkonzepte für eine urbane Personenbeförderung vorgestellt. Sollte es verstärkt zu Lufttransport über Städten kommen, müssen betroffene Lufträume geordnet und überwacht werden. Wie kompatibel Lufttransportsysteme mit den heute bereits relevanten urbanen Beförderungsmitteln sein müssen, wird kritisch diskutiert. Abschließend werden die Aspekte Akzeptanz durch die Kunden und Wirtschaftlichkeit ebenso angerissen, wie die hochproblematische Rohstoffgewinnung, die Entsorgung und das Recycling von Batterien. Y1 - 2022 SN - 978-3-658-36429-8 U6 - https://doi.org/10.1007/978-3-658-36430-4_53 N1 - Tagungsband zum 13. Wissenschaftsforum Mobilität, Beiträge des Wissenschaftsforums SP - 895 EP - 916 PB - Springer Gabler CY - Wiesbaden ER - TY - CHAP A1 - Hebel, Christoph A1 - Herrmann, Ulf A1 - Ritz, Thomas A1 - Röth, Thilo A1 - Anthrakidis, Anette A1 - Böker, Jörg A1 - Franzke, Till A1 - Grodzki, Thomas A1 - Merkens, Torsten A1 - Schöttler, Mirjam T1 - FlexSHARE – Methodisches Framework zur innovativen Gestaltung der urbanen Mobilität durch Sharing- Angebote T2 - Transforming Mobility – What Next? N2 - Das Ziel des INTERREG-Projektes „SHAREuregio“ (FKZ: 34.EFRE-0300134) ist es, grenzüberschreitende Mobilität in der Euregio Rhein-Maas-Nord zu ermöglichen und zu fördern. Dazu soll ein elektromobiles Car- und Bikesharing- System entwickelt und in der Stadt Mönchengladbach, im Kreis Viersen sowie in den Gemeinden Roermond und Venlo (beide NL) zusammen mit den Partnern Wirtschaftsförderung Mönchengladbach, Wirtschaftsförderung für den Kreis Viersen, NEW AG, Goodmoovs (NL), Greenflux (NL) und der FH Aachen implementiert werden. Zunächst richtet sich das Angebot, bestehend aus 40 Elektroautos und 40 Elektrofahrrädern, an Unternehmen und wird nach einer Erprobungsphase, mit einer größeren Anzahl an Fahrzeugen, auch für Privatpersonen verfügbar gemacht werden. Die Fahrzeuge stehen bei den jeweiligen Anwendungspartnern in Deutschland und den Niederlanden. Im Rahmen dieses Projektes hat die FH Aachen „FlexSHARE“ entwickelt – ein methodisches Framework zur innovativen Gestaltung urbaner Sharing- Angebote. Das Framework ermöglicht es, anhand von messbaren Kenngrößen, bedarfsgerechte und auf die Region abgestimmte Sharing-Systeme zu entwickeln. Y1 - 2022 SN - 978-3-658-36429-8 U6 - https://doi.org/10.1007/978-3-658-36430-4_10 N1 - Tagungsband zum 13. Wissenschaftsforum Mobilität, Beiträge des Wissenschaftsforums SP - 153 EP - 169 PB - Springer Gabler CY - Wiesbaden ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Biele, Jens A1 - Dachwald, Bernd A1 - Grimm, Christian A1 - Lange, Caroline A1 - Ulamec, Stephan T1 - Small spacecraft for small solar system body science, planetary defence and applications T2 - IEEE Aerospace Conference 2016 N2 - Following the recent successful landings and occasional re-awakenings of PHILAE, the lander carried aboard ROSETTA to comet 67P/Churyumov-Gerasimenko, and the launch of the Mobile Asteroid Surface Scout, MASCOT, aboard the HAYABUSA2 space probe to asteroid (162173) Ryugu we present an overview of the characteristics and peculiarities of small spacecraft missions to small solar system bodies (SSSB). Their main purpose is planetary science which is transitioning from a ‘pure’ science of observation of the distant to one also supporting in-situ applications relevant for life on Earth. Here we focus on missions at the interface of SSSB science and planetary defence applications. We provide a brief overview of small spacecraft SSSB missions and on this background present recent missions, projects and related studies at the German Aerospace Center, DLR, that contribute to the worldwide planetary defence community. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander of ESA’s ROSETTA comet rendezvous mission now on the surface of comet 67P/Churyumov-Gerasimenko, and the Mobile Asteroid Surface Scout, MASCOT, now in cruise to the ~1 km diameter C-type near-Earth asteroid (162173) Ryugu aboard the Japanese sample-return probe HAYABUSA2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact & Deflection Assessment), a joint effort of ESA, JHU/APL, NASA, OCA and DLR, combining JHU/APL’s DART (Double Asteroid Redirection Test) and ESA’s AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Earth binary asteroid system (65803) Didymos. DLR is currently applying MASCOT heritage and lessons learned to the design of MASCOT2, a lander for the AIM mission to support a bistatic low frequency radar experiment with PHILAE/ROSETTA CONSERT heritage to explore the inner structure of Didymoon which is the designated impact target for DART. Y1 - 2016 SP - 1 EP - 20 ER - TY - CHAP A1 - Dachwald, Bernd A1 - Xu, Changsheng A1 - Feldmann, Marco A1 - Plescher, Engelbert T1 - IceMole : Development of a novel subsurface ice probe and testing of the first prototype on the Morteratsch Glacier T2 - EGU General Assembly 2011 Vienna | Austria | 03 – 08 April 2011 N2 - We present the novel concept of a combined drilling and melting probe for subsurface ice research. This probe, named “IceMole”, is currently developed, built, and tested at the FH Aachen University of Applied Sciences’ Astronautical Laboratory. Here, we describe its first prototype design and report the results of its field tests on the Swiss Morteratsch glacier. Although the IceMole design is currently adapted to terrestrial glaciers and ice shields, it may later be modified for the subsurface in-situ investigation of extraterrestrial ice, e.g., on Mars, Europa, and Enceladus. If life exists on those bodies, it may be present in the ice (as life can also be found in the deep ice of Earth). Y1 - 2011 ER - TY - CHAP A1 - Dachwald, Bernd T1 - Low-Thrust Mission Analysis and Global Trajectory Optimization Using Evolutionary Neurocontrol: New Results T2 - European Workshop on Space Mission Analysis ESA/ESOC, Darmstadt, Germany 10 { 12 Dec 2007 N2 - Interplanetary trajectories for low-thrust spacecraft are often characterized by multiple revolutions around the sun. Unfortunately, the convergence of traditional trajectory optimizers that are based on numerical optimal control methods depends strongly on an adequate initial guess for the control function (if a direct method is used) or for the starting values of the adjoint vector (if an indirect method is used). Especially when many revolutions around the sun are re- quired, trajectory optimization becomes a very difficult and time-consuming task that involves a lot of experience and expert knowledge in astrodynamics and optimal control theory, because an adequate initial guess is extremely hard to find. Evolutionary neurocontrol (ENC) was proposed as a smart method for low-thrust trajectory optimization that fuses artificial neural networks and evolutionary algorithms to so-called evolutionary neurocontrollers (ENCs) [1]. Inspired by natural archetypes, ENC attacks the trajectoryoptimization problem from the perspective of artificial intelligence and machine learning, a perspective that is quite different from that of optimal control theory. Within the context of ENC, a trajectory is regarded as the result of a spacecraft steering strategy that maps permanently the actual spacecraft state and the actual target state onto the actual spacecraft control vector. This way, the problem of searching the optimal spacecraft trajectory is equivalent to the problem of searching (or "learning") the optimal spacecraft steering strategy. An artificial neural network is used to implement such a spacecraft steering strategy. It can be regarded as a parameterized function (the network function) that is defined by the internal network parameters. Therefore, each distinct set of network parameters defines a different network function and thus a different steering strategy. The problem of searching the optimal steering strategy is now equivalent to the problem of searching the optimal set of network parameters. Evolutionary algorithms that work on a population of (artificial) chromosomes are used to find the optimal network parameters, because the parameters can be easily mapped onto a chromosome. The trajectory optimization problem is solved when the optimal chromosome is found. A comparison of solar sail trajectories that have been published by others [2, 3, 4, 5] with ENC-trajectories has shown that ENCs can be successfully applied for near-globally optimal spacecraft control [1, 6] and that they are able to find trajectories that are closer to the (unknown) global optimum, because they explore the trajectory search space more exhaustively than a human expert can do. The obtained trajectories are fairly accurate with respect to the terminal constraint. If a more accurate trajectory is required, the ENC-solution can be used as an initial guess for a local trajectory optimization method. Using ENC, low-thrust trajectories can be optimized without an initial guess and without expert attendance. Here, new results for nuclear electric spacecraft and for solar sail spacecraft are presented and it will be shown that ENCs find very good trajectories even for very difficult problems. Trajectory optimization results are presented for 1. NASA's Solar Polar Imager Mission, a mission to attain a highly inclined close solar orbit with a solar sail [7] 2. a mission to de ect asteroid Apophis with a solar sail from a retrograde orbit with a very-high velocity impact [8, 9] 3. JPL's \2nd Global Trajectory Optimization Competition", a grand tour to visit four asteroids from different classes with a NEP spacecraft Y1 - 2007 ER -