TY - CHAP A1 - Raman, Aravind Hariharan A1 - Jung, Alexander A1 - Horváth, András A1 - Becker, Nadine A1 - Staat, Manfred ED - Staat, Manfred ED - Erni, Daniel T1 - Modification of a computer model of human stem cell-derived cardiomyocyte electrophysiology based on Patch-Clamp measurements T2 - 3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen N2 - Human induced pluripotent stem cells (hiPSCs) have shown to be promising in disease studies and drug screenings [1]. Cardiomyocytes derived from hiPSCs have been extensively investigated using patch-clamping and optical methods to compare their electromechanical behaviour relative to fully matured adult cells. Mathematical models can be used for translating findings on hiPSCCMs to adult cells [2] or to better understand the mechanisms of various ion channels when a drug is applied [3,4]. Paci et al. (2013) [3] developed the first model of hiPSC-CMs, which they later refined based on new data [3]. The model is based on iCells® (Fujifilm Cellular Dynamics, Inc. (FCDI), Madison WI, USA) but major differences among several cell lines and even within a single cell line have been found and motivate an approach for creating sample-specific models. We have developed an optimisation algorithm that parameterises the conductances (in S/F=Siemens/Farad) of the latest Paci et al. model (2018) [5] using current-voltage data obtained in individual patch-clamp experiments derived from an automated patch clamp system (Patchliner, Nanion Technologies GmbH, Munich). Y1 - 2019 SN - 978-3-940402-22-6 U6 - https://doi.org/10.17185/duepublico/48750 SP - 10 EP - 11 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Hunker, Jan A1 - Jung, Alexander A1 - Goßmann, Matthias A1 - Linder, Peter A1 - Staat, Manfred ED - Staat, Manfred ED - Erni, Daniel T1 - Development of a tool to analyze the conduction speed in microelectrode array measurements of cardiac tissue T2 - 3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen N2 - The discovery of human induced pluripotent stem cells reprogrammed from somatic cells [1] and their ability to differentiate into cardiomyocytes (hiPSC-CMs) has provided a robust platform for drug screening [2]. Drug screenings are essential in the development of new components, particularly for evaluating the potential of drugs to induce life-threatening pro-arrhythmias. Between 1988 and 2009, 14 drugs have been removed from the market for this reason [3]. The microelectrode array (MEA) technique is a robust tool for drug screening as it detects the field potentials (FPs) for the entire cell culture. Furthermore, the propagation of the field potential can be examined on an electrode basis. To analyze MEA measurements in detail, we have developed an open-source tool. Y1 - 2019 SN - 978-3-940402-22-6 U6 - https://doi.org/10.17185/duepublico/48750 SP - 7 EP - 8 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Borchers, Kai A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Lange, Caroline A1 - Maiwald, Volker A1 - Mikulz, Eugen A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Sasaki, Kaname A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Toth, Norbert A1 - Wejmo, Elisabet A1 - Biele, Jens A1 - Krause, Christian A1 - Cerotti, Matteo A1 - Peloni, Alessandro A1 - Dachwald, Bernd T1 - Small Spacecraft Solar Sailing for Small Solar System Body Multiple Rendezvous and Landing T2 - 2018 IEEE Aerospace Conference : 3-10 March 2018 Y1 - 2018 SN - 978-1-5386-2014-4 ER - TY - CHAP A1 - Baader, Fabian A1 - Reiswich, M. A1 - Bartsch, M. A1 - Keller, D. A1 - Tiede, E. A1 - Keck, G. A1 - Demircian, A. A1 - Friedrich, M. A1 - Dachwald, Bernd A1 - Schüller, K. A1 - Lehmann, R. A1 - Chojetzki, R. A1 - Durand, C. A1 - Rapp, L. A1 - Kowalski, Julia A1 - Förstner, R. T1 - VIPER - Student research on extraterrestrical ice penetration technology T2 - Proceedings of the 2nd Symposium on Space Educational Activities N2 - Recent analysis of scientific data from Cassini and earth-based observations gave evidence for a global ocean under a surrounding solid ice shell on Saturn's moon Enceladus. Images of Enceladus' South Pole showed several fissures in the ice shell with plumes constantly exhausting frozen water particles, building up the E-Ring, one of the outer rings of Saturn. In this southern region of Enceladus, the ice shell is considered to be as thin as 2 km, about an order of magnitude thinner than on the rest of the moon. Under the ice shell, there is a global ocean consisting of liquid water. Scientists are discussing different approaches the possibilities of taking samples of water, i.e. by melting through the ice using a melting probe. FH Aachen UAS developed a prototype of maneuverable melting probe which can navigate through the ice that has already been tested successfully in a terrestrial environment. This means no atmosphere and or ambient pressure, low ice temperatures of around 100 to 150K (near the South Pole) and a very low gravity of 0,114 m/s^2 or 1100 μg. Two of these influencing measures are about to be investigated at FH Aachen UAS in 2017, low ice temperature and low ambient pressure below the triple point of water. Low gravity cannot be easily simulated inside a large experiment chamber, though. Numerical simulations of the melting process at RWTH Aachen however are showing a gravity dependence of melting behavior. Considering this aspect, VIPER provides a link between large-scale experimental simulations at FH Aachen UAS and numerical simulations at RWTH Aachen. To analyze the melting process, about 90 seconds of experiment time in reduced gravity and low ambient pressure is provided by the REXUS rocket. In this time frame, the melting speed and contact force between ice and probes are measured, as well as heating power and a two-dimensional array of ice temperatures. Additionally, visual and infrared cameras are used to observe the melting process. Y1 - 2018 SP - 1 EP - 6 ER - TY - CHAP A1 - Richter, Charlotte A1 - Braunstein, Bjoern A1 - Stäudle, Benjamin A1 - Attias, Julia A1 - Suess, Alexander A1 - Weber, T. A1 - Rittweger, Joern A1 - Green, David A. A1 - Albracht, Kirsten T1 - In vivo fascicle length of the gastrocnemius muscle during walking in simulated martian gravity using two different body weight support devices T2 - 23rd Annual Congress of the European College of Sport Science, Dublin, Irland Y1 - 2018 ER - TY - CHAP A1 - Marinova, V. A1 - Kerroumi, I. A1 - Lintermann, A. A1 - Göbbert, J.H. A1 - Moulinec, C. A1 - Rible, S. A1 - Fournier, Y. A1 - Behbahani, Mehdi T1 - Numerical Analysis of the FDA Centrifugal Blood Pump T2 - NIC Symposium 2016 Y1 - 2016 SN - 978-3-95806-109-5 SP - 355 EP - 364 ER - TY - CHAP A1 - Behbahani, Mehdi A1 - Rible, Sebastian A1 - Moulinec, Charles A1 - Fournier, Yvan A1 - Nicolai, Mike A1 - Crosetto, Paolo T1 - Simulation of the FDA Centrifugal Blood Pump Using High Performance Computing T2 - World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering Y1 - 2015 VL - 9 IS - 5 ER - TY - CHAP A1 - Behbahani, Mehdi T1 - An Experimental Study of Thrombocyte Reactions in Response to Biomaterial Surfaces and Varying Shear Stress T2 - Proceedings of the International Conference on Biomedical Engineering and Systems Prague, Czech Republic, August 14-15, 2014 Y1 - 2014 SP - Paper 125 ER - TY - CHAP A1 - Kahmann, Stephanie Lucina A1 - Uschok, Stephan A1 - Wegmann, Kilian A1 - Müller, Lars-P. A1 - Staat, Manfred T1 - Biomechanical multibody model with refined kinematics of the elbow T2 - 6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK N2 - The overall objective of this study is to develop a new external fixator, which closely maps the native kinematics of the elbow to decrease the joint force resulting in reduced rehabilitation time and pain. An experimental setup was designed to determine the native kinematics of the elbow during flexion of cadaveric arms. As a preliminary study, data from literature was used to modify a published biomechanical model for the calculation of the joint and muscle forces. They were compared to the original model and the effect of the kinematic refinement was evaluated. Furthermore, the obtained muscle forces were determined in order to apply them in the experimental setup. The joint forces in the modified model differed slightly from the forces in the original model. The muscle force curves changed particularly for small flexion angles but their magnitude for larger angles was consistent. Y1 - 2018 ER - TY - CHAP A1 - Jung, Alexander A1 - Frotscher, Ralf A1 - Staat, Manfred T1 - Electromechanical model of hiPSC-derived ventricular cardiomyocytes cocultured with fibroblasts T2 - 6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK N2 - The CellDrum provides an experimental setup to study the mechanical effects of fibroblasts co-cultured with hiPSC-derived ventricular cardiomyocytes. Multi-scale computational models based on the Finite Element Method are developed. Coupled electrical cardiomyocyte-fibroblast models (cell level) are embedded into reaction-diffusion equations (tissue level) which compute the propagation of the action potential in the cardiac tissue. Electromechanical coupling is realised by an excitation-contraction model (cell level) and the active stress arising during contraction is added to the passive stress in the force balance, which determines the tissue displacement (tissue level). Tissue parameters in the model can be identified experimentally to the specific sample. Y1 - 2018 ER -